

Realize Your Product Promise®

Mechanical Products Update – January 2019

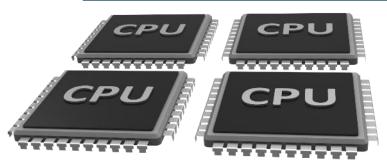
AGENDA

SOLVERS & HPC	EXTERNAL MODEL	
CONTACT	GENERAL AXISYMMETRIC	
FRACTURE	MAPDL ELEMENTS	
MECHANICAL	MATERIAL DESIGNER	
CMS	TOPLOGY OPTIMIZATION	
RBD	LEVEL SET	
LINEAR DYNAMICS	ADDITIVE MANUFACTURING	
ACOUSTICS	COMPOSITES	
EXPLICIT DYNAMICS	AQWA	
LS-DYNA	CLOUD	

ANSYS°

Mechanical APDL 2019 R1 Release

SOLVERS & HPC


Distributed ANSYS Enhancements

New features

- –<u>Now default for all simulations</u>!
- -Support for SMART fracture
- -Support for prestressed substructuring generation pass
- -Support for substructuring generation pass restarts

Improved scaling

-Significantly improved scaling when contact is present

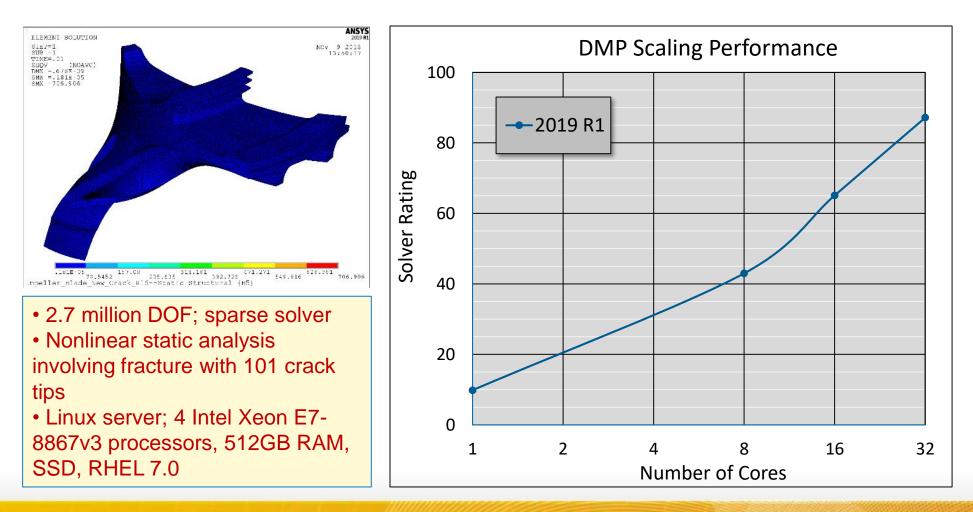
DMP

- Distributed Memory
 Parallel
 SMP
- Shared Memory Parallel

Distributed ANSYS is now default

- -Distributed memory parallel (DMP) is now enabled by default when MADPL is launched ("-dis" command line argument no longer necessary)
- -To revert back to shared memory parallel (SMP) use "-smp" command line option (or select SMP via the MAPDL launcher)

Caution:


Operations that were not supported in DMP in previous releases have NOT been automatically parallelized in this release

NNSYS

Distributed ANSYS Enhancements

Support added for SMART Fracture

Scaling when contact is present

-Some indicators for when contact is a performance bottleneck

*** WARNING *** CP = 291.883 TIME= 01:04:10 The work load is highly imbalanced for this solution, likely due to the contact pair(s) in the model. This imbalance will negatively impact the scaling of Distributed ANSYS. Please review the contact pair associated with real constant set 55 to see if it can be altered to help improve performance. See the Performance Guide for more details on scaling and for some tips on how to manually alter the contact definition to improve the work load balance.

Scaling when contact is present

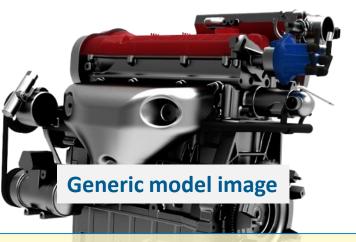
- -Symmetric contact pairs improved
 - In previous releases both sets of contact and target surfaces for a symmetric contact pair would reside in a single domain → poor load balance

-MPC contact pairs improved

 In previous releases if an MPC and a non-MPC contact pair touched or overlapped, they would both reside in a single domain → poor load balance

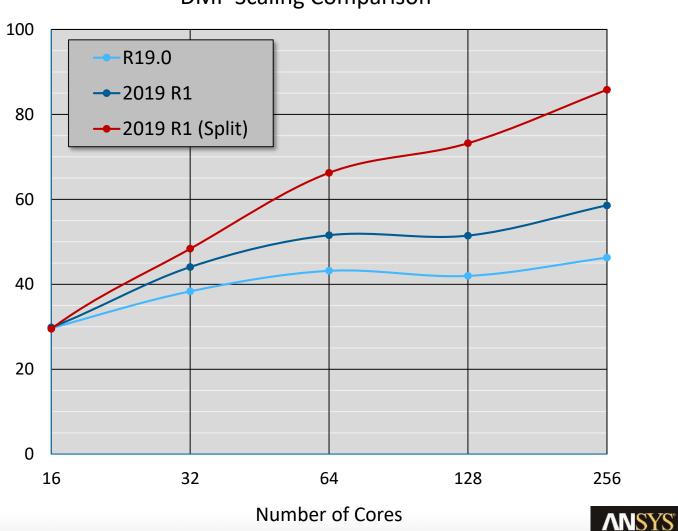
–Goal \rightarrow Reduce the load imbalance

Contact pair splitting


 $-\underline{CNCH,DMP} \rightarrow Automatically split contact pairs during solution$

$-\underline{CNCH,SPLIT} \rightarrow Manually split contact pairs$

$-\underline{CNCH,MERGE} \rightarrow Manually merge contact pairs$


CNCH, DMP scaling improvement

DMP Scaling Comparison

Solver Rating

- 9.1 million DOF; sparse solver
- Nonlinear static analysis involving contact, plasticity and gasket elements
- Linux cluster; each compute node contains 2 Intel Xeon E5-2695v3 processors, 256GB RAM, SSD, CentOS 7.2
- Mellanox FDR Infiniband

NNSYS

Distributed ANSYS Enhancements

CNCH, DMP scaling improvement

Generic model image

R19.0 16 32 64 128 256

DMP Scaling Comparison

16

14

12

10

8

6

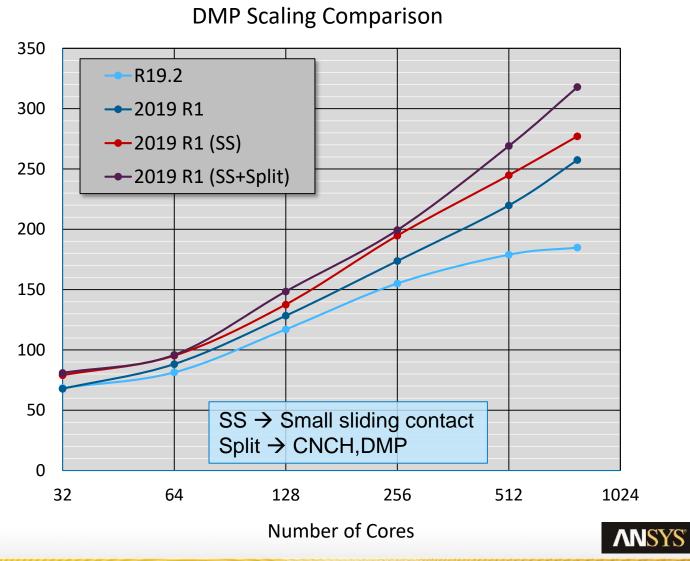
4

2

0

Solver Rating

- Nonlinear static analysis involving contact, ٠ plasticity and NLGEOM
- Linux cluster; each compute node contains 2 ٠ Intel Xeon E5-2695v3 processors, 256GB RAM, SSD, CentOS 7.2
- Mellanox FDR Infiniband



•CNCH, DMP scaling improvement

Solver Rating

- 10.2 million DOF; sparse solver
- Nonlinear static analysis involving contact, plasticity
- Linux cluster; each compute node contains 2 Intel Xeon Gold 6148 processors, 384GB RAM, SSD, CentOS 7.3
- Mellanox EDR Infiniband

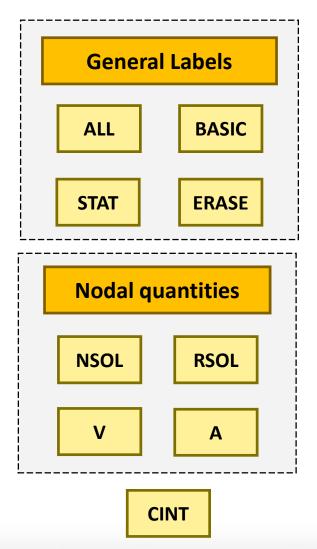
•OUTRES command changes

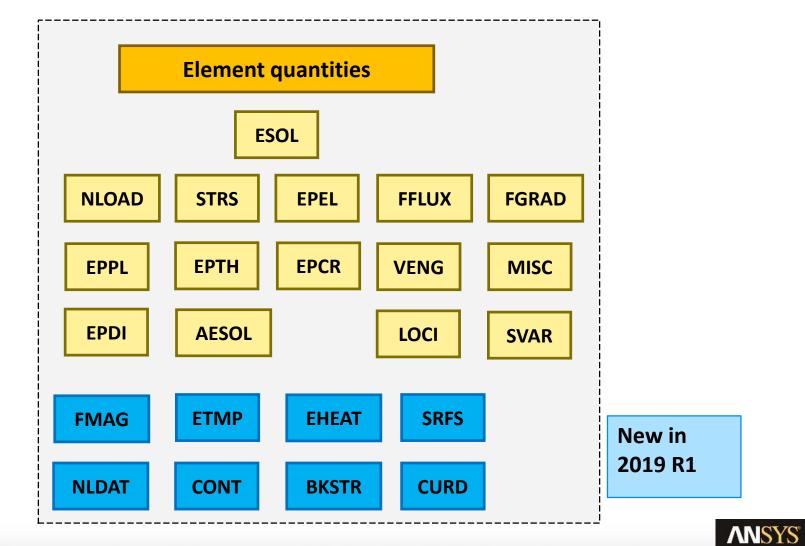
-Eight new result item labels have been added

•New compression algorithm available (sparsify)

- -Activated via the /FCOMP,RST,SPARSE command
- -Lossless compression of results file data
- -Typically reduces results file size by 10-50%
- -Virtually no performance penalty

• OUTRES command changes


OUTRES, Item, Freq, Cname, --, NSVAR, DSUBres


•OUTRES command changes

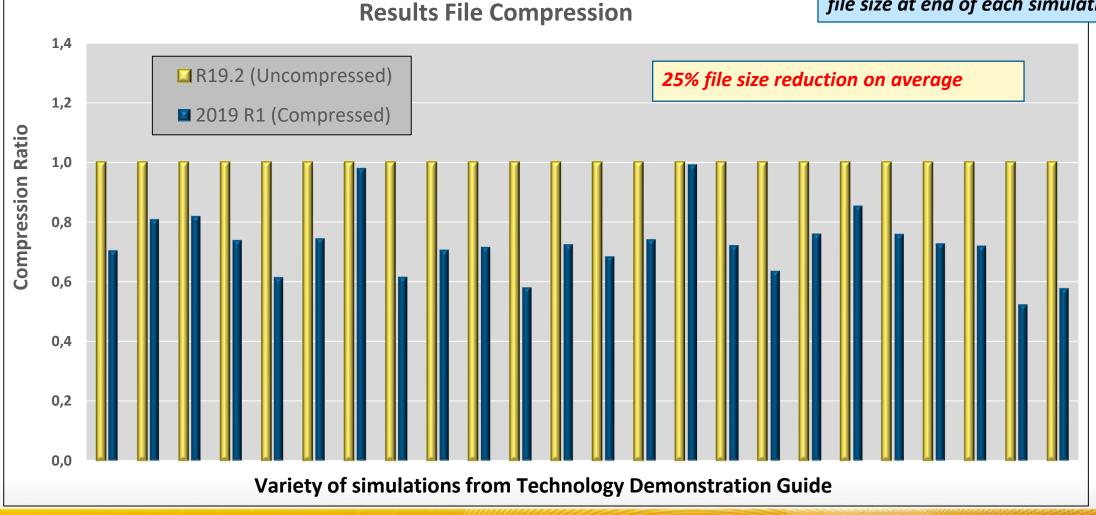
- -New labels enable additional user control over results file data
 - **ETMP** Element temperatures
 - **CONT** Element contact data
 - **NLDAT** Element nonlinear data
 - **EHEAT** Element heat generation rate
 - **FMAG** Electromagnetic nodal forces
 - **CURD** Element source current densities
 - **BKSTR** Element back stresses (requires EPPL too)
 - **SRFS** Element surface stresses

• OUTRES command changes

• OUTRES command changes

- -MAPDL default
 - OUTRES,ALL → write everything except LOCI, SVAR, V, A
 - No change in 2019 R1
- -WB/Mechanical default

R19.2 2019 R1 OUTRES, ERASE OUTRES, ERASE OUTRES, ALL, NONE OUTRES, ALL, NONE OUTRES, NSOL, XXX OUTRES, NSOL, XXX OUTRES, RSOL, XXX OUTRES, RSOL, XXX OUTRES, NLOAD, XXX OUTRES, NLOAD, XXX OUTRES, STRS, xxx OUTRES, STRS, xxx OUTRES, EPEL, XXX OUTRES, EPEL, XXX OUTRES, ETMP, xxx **Extra OUTRES** OUTRES, CONT, xxx commands added OUTRES, NLDAT, xxx When used in 2019 R1, temperatures, Advocate caution when reusing .dat, .inp files from earlier version in 2019 R1 contact data, etc.. are no longer written


NNSYS

ANSYS°

Results File Enhancements

Results file compression (sparsify)

Technology Demonstration Manual models run on Linux server while measuring results file size at end of each simulation

Miscellaneous Enhancements

- •AVL/Excite interface writes out damping matrix (if applicable) to .exb file
- •MSC/Adams interface for .mnf file has been upgraded
 - -Code has been broken since R19.1 \rightarrow fixed in this release
 - -Some additional items are now written to .mnf file

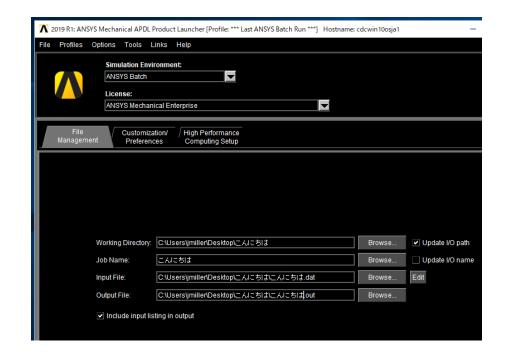
Mechanical APDL 2019 R1

Usability Enhancements

•Support added for Japanese/Chinese languages

- -Input file can have Japanese/Chinese characters
 - Ex. --i こんにちは.dat
- -Jobname can be defined with Japanese/Chinese characters
 - Ex. ex. -j こんにちは
- -Directory paths containing Japanese/Chinese characters
 - Ex. -- dir C:\Users\user\Desktop\こんにちは\
- -Output file can have Japanese/Chinese characters
 - Ex. -o こんにちは.out

-NOTE: must continue to use ASCII characters (i.e., English) for file extensions



Usability Enhancements

•Support added for Japanese/Chinese languages

-Support added for command line, launcher and certain MAPDL commands

<u>Command Line Use:</u> ansys193 – b – dir . \こんにちは – i こんにちは.dat – o こんにちは.out – j こんにちは

Contact and FMDY

ANSYS 2019 R1 update

Distributed (DMP) Contact

Goal:

To improve DMP scalability under higher core counts for contact model with large contact pairs (large number of contact elements relative to the total number of elements in the entire model)

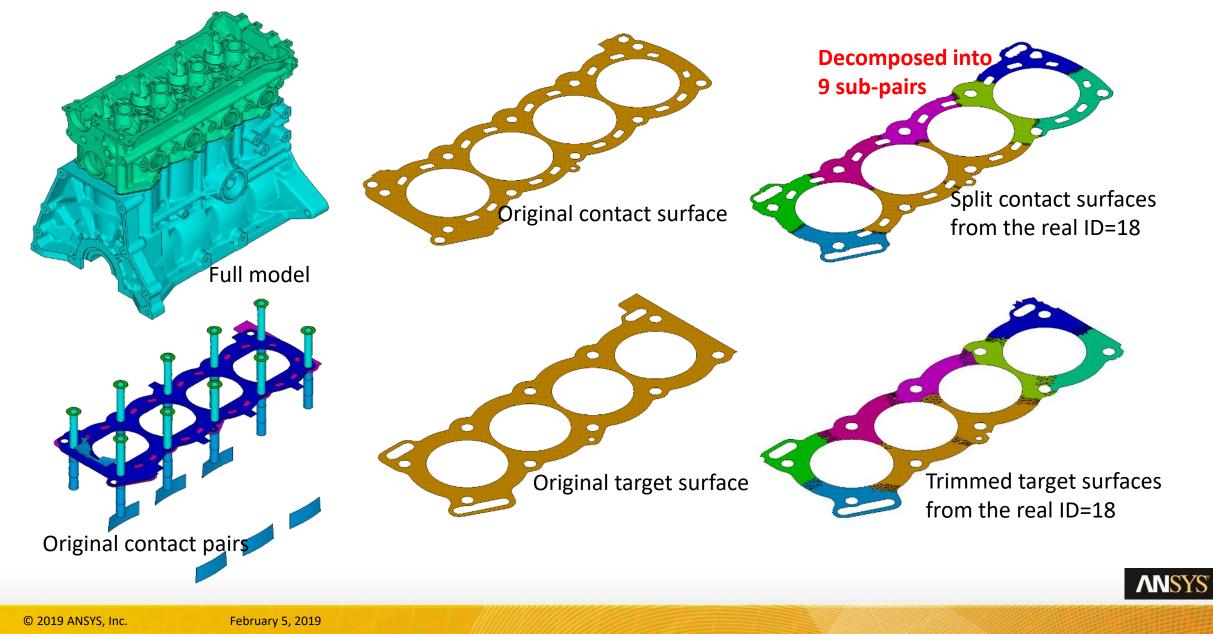
Basic Idea:

It automatically decomposes the large contact pair into sub-pairs, transfers the sub-pairs to different cores, which improves load balance among all CPU cores.

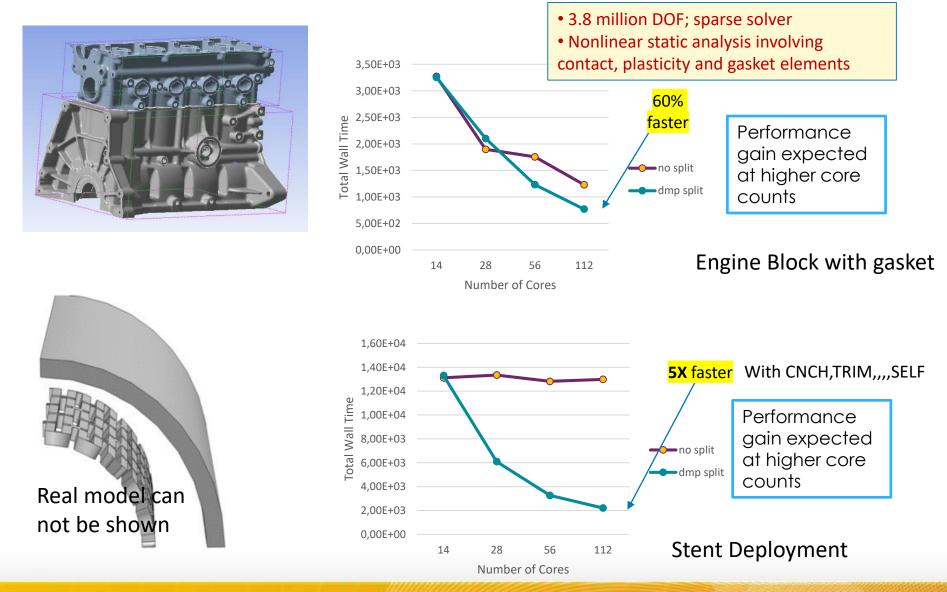
Challenge: Making identical results between no-splitting and splitting

WB/Mechanical: can just post contact results on the original contact pairs without being noticed any split pairs.

New Options in CNCHECK Command


CNCHECK, Option, RID1, RID2, RINC, InterType, Trlevel

SPLIT	Split any original (or base) contact pair into smaller sub-pairs in /PREP7 phase which is mainly for better scalability in DMP run. The split contact pairs may create additional overlapped contact elements at split boundaries. Contact pairs can only be split once. A repeated use of this option has no further splitting for the already split contact pairs.
DMP	This option is similar to the SPLIT, but it is more automatic and contact pair splitting is done at the solution level (SOLVE) of the first load step, not at the preprocessing level. This option is valid only in a distributed-memory parallel (DMP) run. For this option, <i>TRlevel</i> and <i>InterType</i> are valid; all other arguments are ignored.
MERGE	Merge all sub-contact pairs which are previously split by prior <i>Option</i> = SPLIT, DMP back to their original pairs. If this option is used, other labels will not work.


Engine Block with Gasket

26

NNSYS°

Examples:

DMP Contact: Other Customer's Models

Run 02 set with Number of splitting = 4 Number of CPU cores= 16

Performance gain expected at higher core counts

Models	No-Split	With Split	Time reduction
model-1	6967	5363	30
model-2	26756	14584	83
model-3	37756	22204	Semiimplicit 60
model-4	8463	7414	14
model-5	17439	12559	39
model-6	3259	1871	74
model-7	5664	2685	111
Model-8	155	101	Semiimplicit 53
model-9	4933	1372	260
model-10	1833	1519	21

Semi-Implicit Method To Improve Robustness of MAPDL

Goal:

- To solve complex problems that encounter convergence difficulty in an implicit solver by switching to explicit time integration
- Support most features (e.g. CEs, LMs, Higher order elements, Joints, UP) of MAPDL

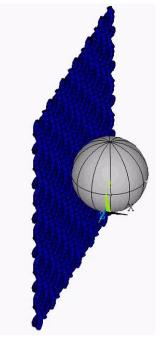
Basic Idea:

Central difference time integration (explicit/semi-implicit) transforms governing equations in an explicit form that does not need Newton-Raphson iterations

Semi-Implicit Method guarantees a solution

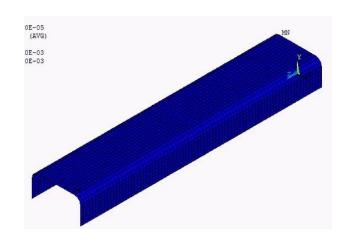
- Start with Implicit
- Convergence difficulty ?-> Change to explicit to overcome hump
- Past the most non-linear part?-> Change back to implicit solver

Command for Semi-implicit Method


Semiimplicit, Option, Type, Value

MSCA	Selective Mass Scaling Factor for the explicit solve phase. Selective Mass scaling is needed to run quasi-static problem in explicit Type = DTIM, Value = Desired initial minimum time increment Type = MASS, Value = Value of Selective mass scaling Factor
ETOI	Sets criterion for transitioning from explicit to implicit Type= Time, Value= Time to be spent in explicit
SFAC	Safety factor for time incrementation in the explicit solve phase

Semi-Implicit Method To Improve Robustness of MAPDL



Buckling of a Bottle

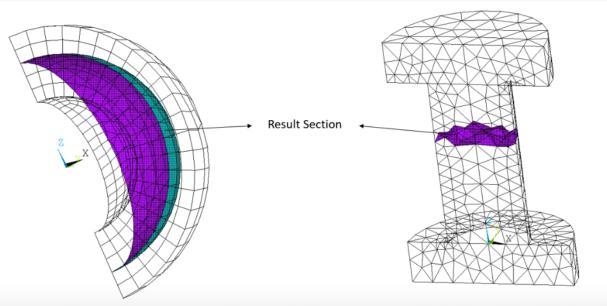
Cannot solve the problem in implicit alone- has convergence difficulties Automatically transitions to explicit and solves the problem in explicit

Tennis Ball impacting a net

Automatically transitions from implicit to explicit and back to implicit 9 times

Crushing of Thin Shell Box

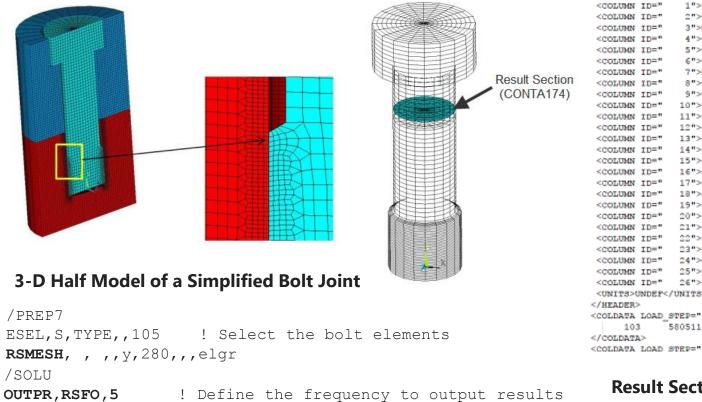
Automatically transitions from HHT to explicit (half way) and solves the problem in explicit.



Result Section Output

A result section is a user-defined surface that can be used to output and monitor section forces, moments, heat flow, current, mass flow, and pore fluid volume flux during a solution.

Result section output quantities (like bending moments and axial forces etc.) can be monitored without storing results for all elements for each sub step, which significantly reduces the results file size.


RSMESH	automatically creates the result section inside 2-D and 3-D continuum element meshes.
OUTPR, RSFO	The section output quantities are written to a single Jobname.SECF text file at a user-specified frequency
<u>NLHIST</u>	Certain result section quantities can also be monitored (or terminated) during solution

Example: Result Section in a Bolt Thread Model

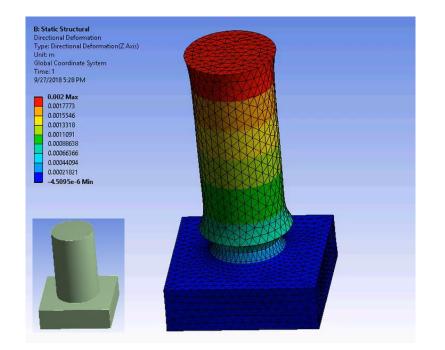
This 3-D model represents an M120 structural steel bolt with standard thread dimensions.

The model includes a cover plate and a base plate. A bilinear isotropic plastic material model is used for the bolt and the plates.

<HEADER FRQ="SUBSTEP"> <COLUMN ID=" 1">Result Section ID</COLUMN> <COLUMN ID=" 2">Total Section Force</COLUMN> <COLUMN ID=" 3">Normal Section Force-x</COLUMN> 4">Tangential Section Force-y</COLUMN> <COLUMN ID=" <COLUMN ID=" 5">Tangential Section Force-z</COLUMN> <COLUMN ID=" 6">Total Section Moment</COLUMN> <COLUMN ID=" 7">Normal Section Moment-x</COLUMN> <COLUMN ID=" 8">Tangential Section Moment-y</COLUMN> <COLUMN ID=" 9">Tangential Section Moment-z</COLUMN> <COLUMN ID=" 10">Deformed Section Area</COLUMN> 11">Deformed Section Diameter</COLUMN> <COLUMN ID=" <COLUMN ID=" 12">Section Axial Stress</COLUMN> <COLUMN ID=" 13">Section Bending Stress</COLUMN> <COLUMN ID=" 14">Section Center X-Coor</COLUMN> <COLUMN ID=" 15">Section Center Y-Coor</COLUMN> <COLUMN ID=" 16">Section Center 2-Coor</COLUMN> <COLUMN ID=" 17">Section Normal-X</COLUMN> <COLUMN ID=" 18">Section Normal-Y</COLUMN> 19">Section Normal-2</COLUMN> <COLUMN ID=" 20">1st rotation about local Z</COLUMN> <COLUMN ID=" <COLUMN ID=" 21">2nd rotation about local X</COLUMN> <COLUMN ID=" 22">3rd rotation about local Y</COLUMN> 23">Heat Flow</COLUMN> <COLUMN ID=" 24">Current Flow</COLUMN> <COLUMN ID=" <COLUMN ID=" 25">Diffusion Flow Rate</COLUMN> <COLUMN ID=" 26">Fluid Flow</COLUMN> <UNITS>UNDEF</UNITS> </HEADER> <COLDATA LOAD STEP=" 1" SUBSTEP=" 5" ITERATION= -580507.4 103 580511.4 -1234.491</COLDATA> 1" SUBSTEP=" 10" ITERATION=

Result Section in the Bolt at y = 280

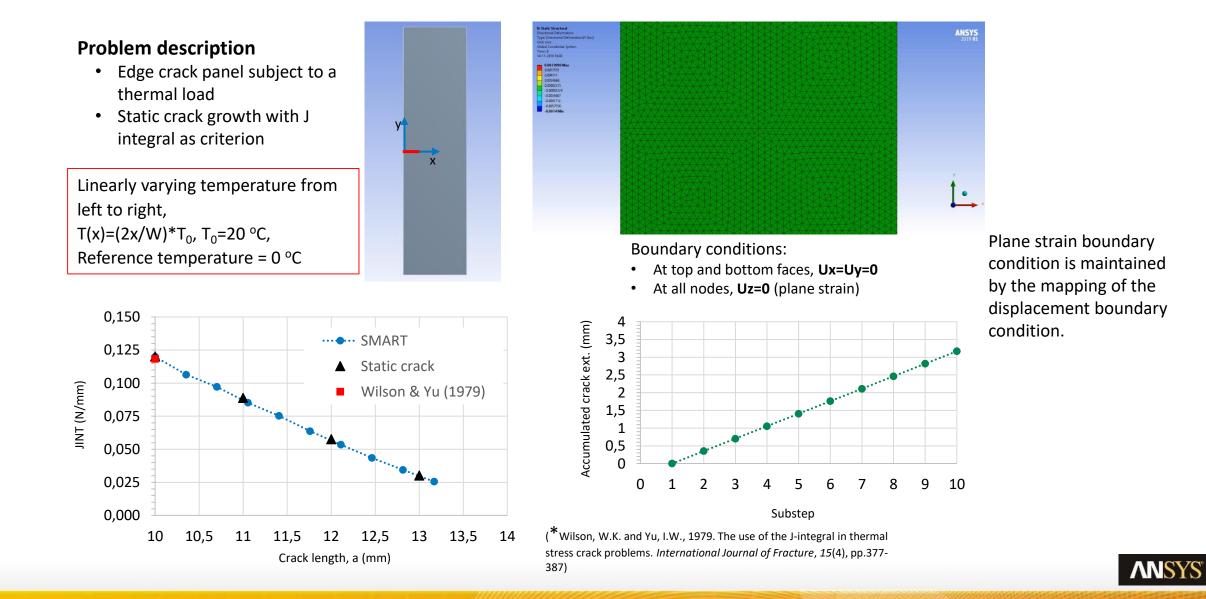
SMART Crack Growth


ANSYS 2019 R1 update

SMART Crack Growth Simulation Framework

New SMART crack growth enhancement

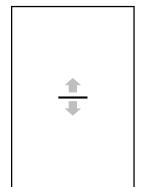
- Support temperature loading
 - Map temperature boundary condition
- Support surface pressure loading
 - Map pressure load for external surfaces and current crack surfaces
 - Allow to define pressure load for newly generated crack surfaces
- Support tabular pressure load as function of time
- Support both SMP and DMP
- Support PCG and SPARSE solvers
- Support displacement boundary condition mapping
 - Fixed DIS boundary condition
 - Face based DIS boundary condition

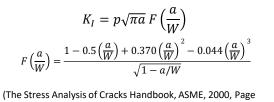

SMART Crack Growth Simulation Framework

New crack surface pressure load

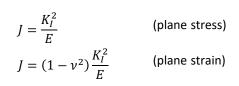
- Command to specify new crack surface pressure
 - CGROW, CSFL, loadtype, loadkey, value
 - loadtype: type of load, currently only pressure load as PRESSURE
 - loadkey: load key for the crack surface load, current set to 0
 - Value: the new crack surface load value for the load step
 - Current only constant load value can be applied
 - To define a varying load, use table function %table%, which table defines pressure load table as function of time (and may be in the future as function of coordinates x, y, z). Use *DIM to define the table.

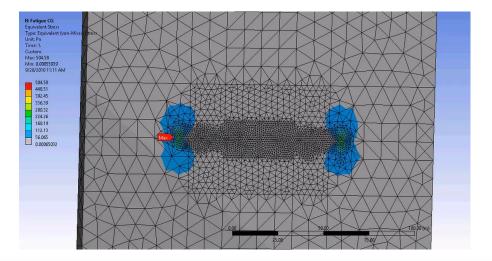
```
prsv=20000000 ! unit Pa (400MPa)
! apply presure to new crack surface
cgrow,csfl,press,,prsv
```

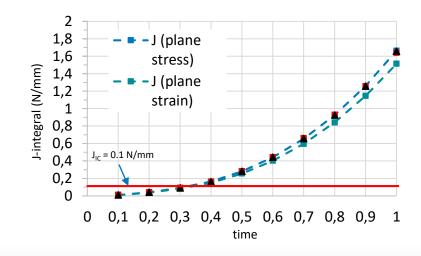




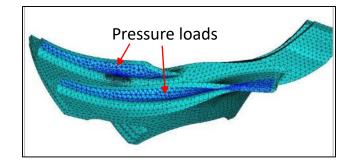
Center crack panel subjected to surface pressure


Problem description


- Tensile panel with a center crack
- Static crack growth with J integral as criterion



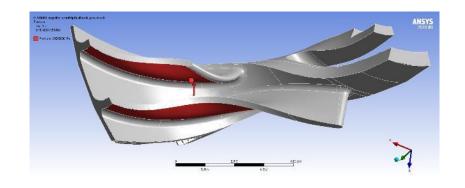
41)

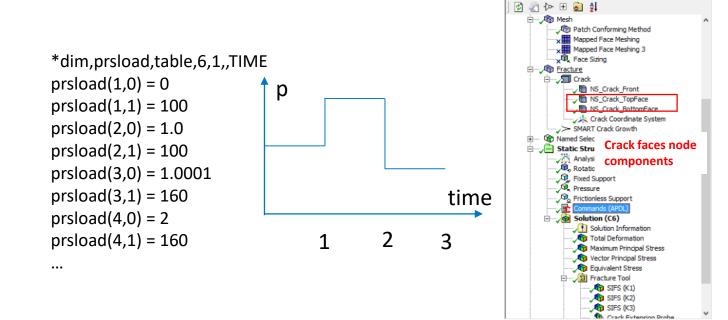


J (average of 5 contours) evaluated at the middle of the crack front

Distributed Solution

- Work within ANSYS distributed solution architecture
- FEM model solved in distributed mode
- Fracture and SMART Crack Growth Calculation including remeshing are conducted only in master node


Colution 1	# of CPU	Time (seconds)	Speedup
Solution 1	1	163	1
Elements: 0.058M	2	109	1.50
Equations: 0.23M Crack tips : 23	4	82	1.98
Remeshing: 5 times	8	70	2.32
	16	72	2.26
Solution 2	# of CPU	Time (s)	Speedup in total
Elements: 0.67M	1	8799	1
Equations: 2.7M	8	2010	4.38
Crack tips : 101 Remeshing: 3 times	16	1327	6.63
Kenneshing. 5 times	32	991	8.88


39 © 2019 ANSYS, Inc.

NNSYS

Multi load step and tabular load

• Various load magnitude for the fatigue

prsv=20000000 ! unit Pa (400MPa)

! Apply pressure to crack surface cmsel,s,NS_Crack_TopFace,node cmsel,a,NS_Crack_BottomFace,node SF,all,pres,prsv

! apply surface pressure to new crack surface cgrow,csfl,press,,prsv

! Apply tabular pressure to crack surface cmsel,s,NS_Crack_TopFace,node cmsel,a,NS_Crack_BottomFace,node SF,all,pres,%prsload%

! apply surface pressure to new crack surface
cgrow,csfl,press,, ,%prsload%

Solution results output control

- Use OUTRES command to control for different results output
 - OUTRES,ALL,30! Write solution to rst file for every 30 substepsOUTRES,CINT,ALL! Write CINT (fracture) results to rst file for all substeps

SMART crack growth usually generates a large number of substeps, writing results at every substep will result in a very large rst file.

Mechanical Enhancements

ANSYS 2019R1 update

Part Transform

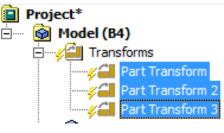
The new Part Transform feature that allows you to reorient parts by specifying translations and/or rotations within Mechanical

Allows you to transform mesh and/or automatically regenerate contacts along with transforming parts

Graphical preview allows you to see the location of the parts before and after the transform

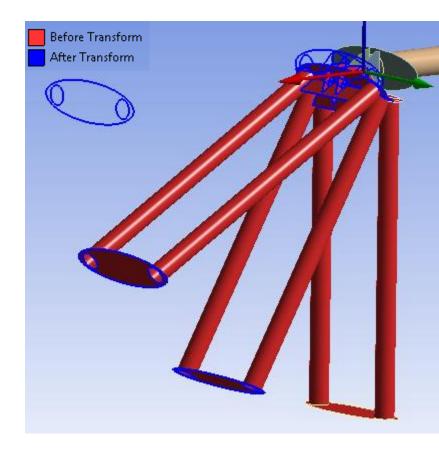
De	etails of "Part Transf	orm"	Ц
-	Scope		
	Scoping Method	Geometry Selection	
	Geometry	3 Parts	
-	Definition		
	Define By	Rotation And Translation	
	Coordinate System	Coordinate System	
	Translate X	0. m	
	Translate Y	0. m	
	Translate Z	0. m	
	Rotate X	0. °	
	📃 Rotate Y	90. °	
	Rotate Z	0. °	

ient	Part Transform Before Transform After Transform
parts	
parts	
art Transfori	m
with Mesh	0.000

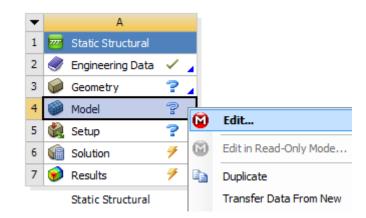

Part Tra

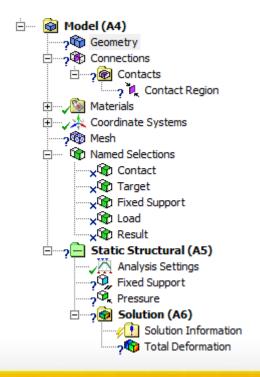
Mechanical

Part Transform


Allows you to reorient one or more parts around arbitrary coordinate systems

Allows you to reorient one or more parts using a pair of coordinate systems (source and target). The application automatically calculates the transform such that the source is aligned with the target after transform.


You can apply multiple transforms to a part. The transforms are applied in the order they appear in the tree.

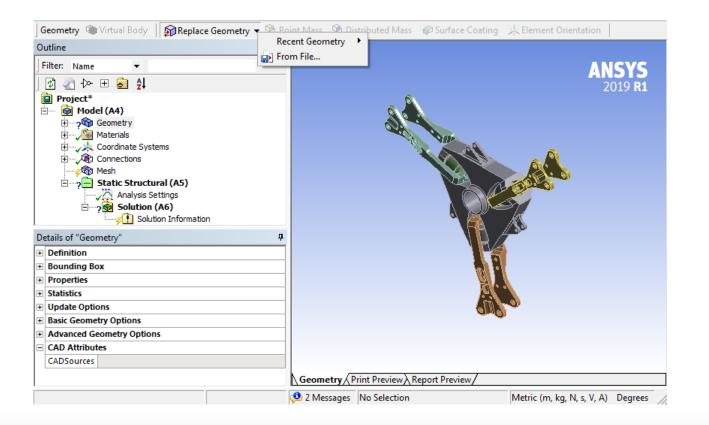

You can reorder the transforms by drag-drop in the tree.

Simulation Template

Workbench now allows users to enter/edit Mechanical without attaching geometry.

Users can setup their analysis system using criterion based named selections without having to attach geometry. Such an analysis setup is called a Simulation Template.

De	Details of "Contact Region"					
-	Scope					
	Scoping Method	Named Selection				
	Contact	Contact				
	Target	Target				


Details of "Fixed Support"							
-	Scope						
	Scoping Method	Named Selection					
	Named Selection	Fixed Support					

De	Details of "Total Deformation"					
Ξ	Scope					
	Scoping Method	Named Selection				
	Named Selection	Result				

Attach/Replace Geometry

From Mechanical, the new option Attach Geometry, available from the Geometry object toolbar, enables you to import a geometry from with the application.

 Geometry
 Virtual Body
 Image: Attach Geometry
 Image: Attach Geometry
 Image: Attach Geometry

 Outline
 Image: Attach Geometry
 Image: From File...
 Image: Attach Geometry

 Filter:
 Name
 Image: Attach Geometry
 Image: Attach Geometry

 Filter:
 Name
 Image: Attach Geometry
 Image: Attach Geometry

 Image: Project*
 Image: Attach Geometry
 Image: Attach Geometry

 Image: Project

Once you attach a geometry, or for a system that already includes a geometry, the Replace Geometry option replaces Attach Geometry enabling you to replace an existing geometry.

Convection Fluid Flow

The Convection boundary condition now supports vertex and node scoping when using information from Thermal Fluid line bodies.

This feature enables you to use a specific vertex or node to get the bulk temperature in the convection calculations.

Both direct and coping and named selections are supported

De	etails of "Convection	"
-	Scope	
	Scoping Method	Geometry Selection
	Geometry	1 Face
-	Definition	1
	Туре	Convection
	Film Coefficient	735.91 W/m ² .°C (step applied)
	Convection Matrix	Program Controlled
	Suppressed	No
Ξ	Fluid Flow Controls	
L	Fluid Flow	Yes
L	Scoping Method	Geometry Selection
	Fluid Flow Scoping	1 Node

De	Details of "Convection"						
Ξ	Scope						
	Scoping Method	Geometry Selection					
	Geometry	1 Face					
	Definition						
	Туре	Convection					
	Film Coefficient	735.91 W/m ² .°C (step applied					
	Convection Matrix	Program Controlled					
	Suppressed	No					
Ξ	Fluid Flow Controls						
	Fluid Flow	Yes					
	Scoping Method	Named Selection					
	Fluid Flow Scoping	fluidl					

Restart Controls For Nonlinear Adaptivity Analysis

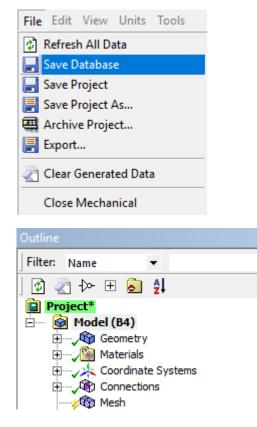
Independent Restart Controls are now available under Nonlinear Adaptivity Remeshing Controls.

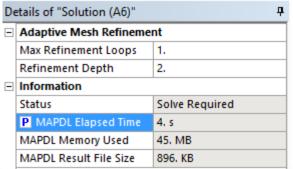
The options control the generation/retention of .RDnn remeshing database files, which are needed for mesh nonlinear adaptivity analysis.

De	Details of "Analysis Settings" 4						
+	Step Controls						
+	Solver Controls						
+	Rotordynamics Controls						
+	Restart Controls						
Ξ	Nonlinear Adaptivity Remes	hing Controls					
	Refinement Algorithm	General Remeshing					
	Remeshing Gradient	Practical Shape Gradient					
	Boundary Angle	15.°					
	Edge Splitting Angle	10. °					
	Number of Sculpted Layers						
	Refinement (NSL)	2.					
	Global Size Ratio						
	Refinement (GSR)	0.75					
	Remeshing Tolerance						
	Refinement (RT)	0.5					
	Generate Restart Points	Program Controlled					
	Retain Files After Full Solve	Yes					
+	Nonlinear Controls						
+	Output Controls						
+	Analysis Data Management						
+	Visibility						

Miscellaneous Usability Enhancements

Quickly Save Mechanical Session

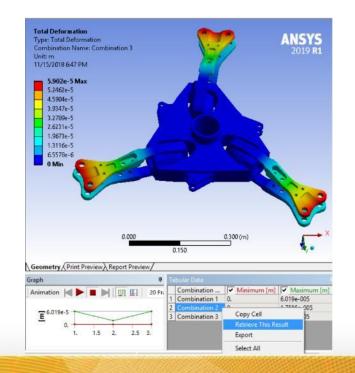

• A new File menu option is available: Save Database. This option enables you to save the current Mechanical session without having to save the entire project. However, you must save the project when you exit the application to properly save your changes.


Project Object

• The Project object in the Outline now displays with an asterisk (*) in its name to indicate that you have not yet saved the Mechanical database since the last change or set of changes.

Parametrizing MAPDL Elapsed Time

• The MAPDL Elapsed Time can now be parametrized and is available as an output parameter in the Parameter Set in workbench.

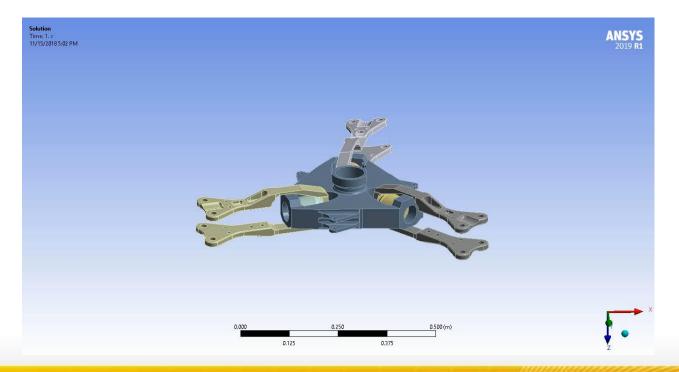


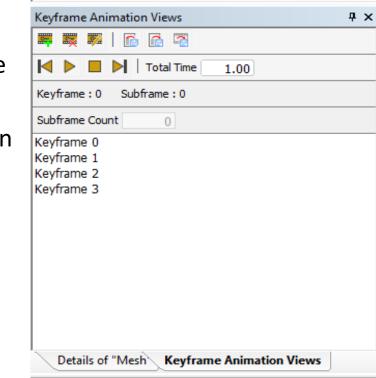
New Solution Combination

With the new solution combination, users can:

- Specify **multiple** combinations.
- Combine solutions for **Static** Structural, **Transient** Structural, and **Harmonic** Response analyses.
- Specify solution combinations as either Linear or SRSS (Square Root of Summation of Squares).
- Use Tabular Data or a result Set Number to specify which combination you wish to display.
- Import and/or Export the Solution Combination Worksheet as a Comma Separated Value (CSV) file.

Solution Combination							
*Right click on the grid to add/delete a row or a column.							
	Α	В	С	D	E	F	
1		Environment	Static Structural	Static Structural	Harmonic Response	Transient 👻	
2		Time/Frequency	1	End Time	85	2	
3		Phase Angle			270		
4							
5	Combination	Туре					
6	Combination 1	Linear 💌	1	1	0	1	
7	Combination 2	SRSS 💌	0	0.5	0.5	0	
8 Combination 3 Linear -1 2 0 0.5							
4	Add Combination	Add Base Ca	se				

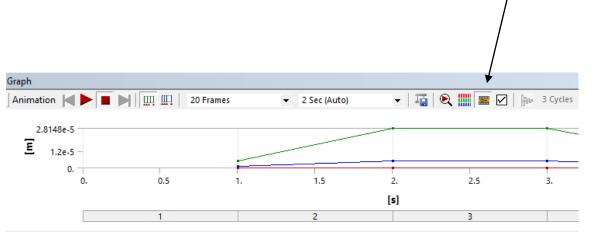

© 2019 ANSYS, Inc.

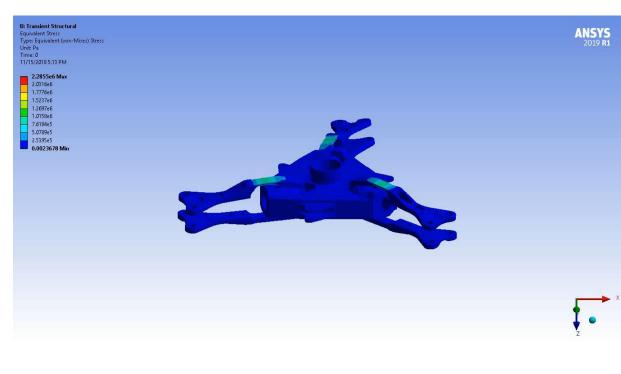

Mechanical

Keyframe Animation

Keyframe animation enables you to string together different snapshots of the model in the Geometry window to create an animation

- Keyframes are created by positioning the model in the desired orientation and clicking on Create Keyframe.
- The application interpolates the transition from keyframe to keyframe to create a smooth animation.




• Export the video in various formats: MP4, WMV , AVI and GIF

Keyframe Animation (continued) for Results

- Keyframe animation for Results enables stitching different snapshots (different view settings) of the model for smooth visualization of results, coordinating the animation in time/steps space (natural for results) with the one in the 3D space (natural for keyframe animation).
- This can be enabled by clicking the keyframe animation icon in the animation toolbar and the user can have a choice of synchronizing the frame rate similar to the one set in the keyframe animation window

Frames Synchronized with Keyframe animation

Export Animation

Animation Tool animates the results to show the evolution of the specified result of a simulation.

Keyframe Animation Tool, allows the examination of the models (geometry and result) from different points of view in a dynamic way.

The animation can be exported by selecting the export animation option on the animation toolbar after selecting the result on the solution tree.

The supported formats to export animation are MP4, WMV, AVI and GIF.

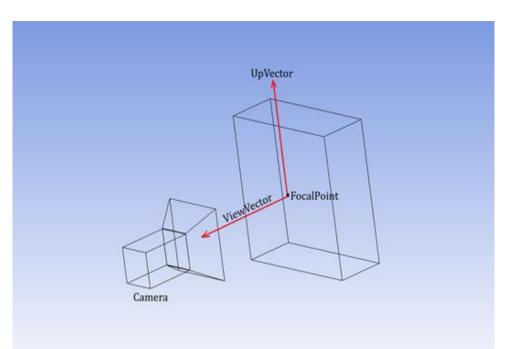
- Varying the frame rate allows the capture of a specific number of snapshots to export the video file
- Varying the play length allows the generation of animation video of a specific duration.
- When the keyframe animation for result is enabled the keyframe animation for the solution result is exported as media file

Graph							џ
Animati	on 属 🕨	20 Frames	2 Sec (Auto)	• III -	Q 🏢 🔳 🛛 🕨	a 3 Cycles	
_							
Ξ							
-							_
				[s]			

Export Animation (continued)

The generated keyframes can be exported by the export keyframe option on the keyframe animation toolbar.

- •The total number of intra frames between main keyframes for exported animation can be specified by the **Subframe Count** .
- •The total play duration of exported animation file can be specified by the **Total Time** option .


Keyframe Animation Views	Ψ×
🛤 📷 💽 🔂 🖓	
Total Time 3.00	
Keyframe: 0 Subframe: 0	
Subframe Count 30	
Keyframe 0	
Keyframe 1	
Keyframe 2	
Keyframe 3	

Mechanical Scripting API improvements - Camera

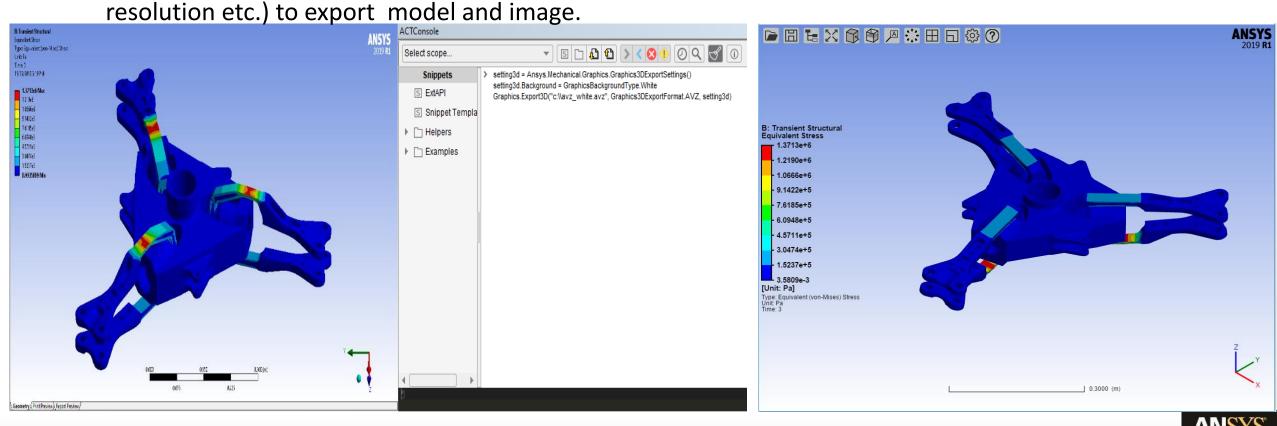
The WB Camera is analogous to a digital camera. The visualization of the model can be manipulated by changing the properties and methods of the camera ACT.

The following properties together represent the state of the camera.

- FocalPoint: specifies the location on the object where the camera is looking at.
- ViewVector: direction the camera is looking at.
- UpVector: specifies the orientation (tilting) of the camera.
- ZoomFactor: a value of 1 will roughly fit the window.
 Larger values will make the model appear smaller while smaller values will make the model appear larger.

Scripting API - Camera (continued)

These methods are available to manipulate the camera in a more user-friendly manner:


- SetFit: Fit the view to the whole model
- Rotate: Rotate along a particular axis
- SetSpecificViewOrientation: Set the orientation to one of the following predefined viewing orientations (with respect to the global Cartesian coordinate system):
 - **Front**: Front direction (i.e. 0, 0, 1)
 - **Back**: Back direction (i.e. 0, 0,-1)
 - **Top**: Top direction (i.e. 0, 1, 0)
 - **Bottom**: Bottom direction (i.e. 0,-1, 0)
 - **Left**: Left direction (i.e. -1, 0, 0)
 - **Right**: Right direction (i.e. 1, 0, 0)
 - **Iso**: Iso direction (i.e. 1, 1, 1)

Scripting API improvements - Export Graphics Display

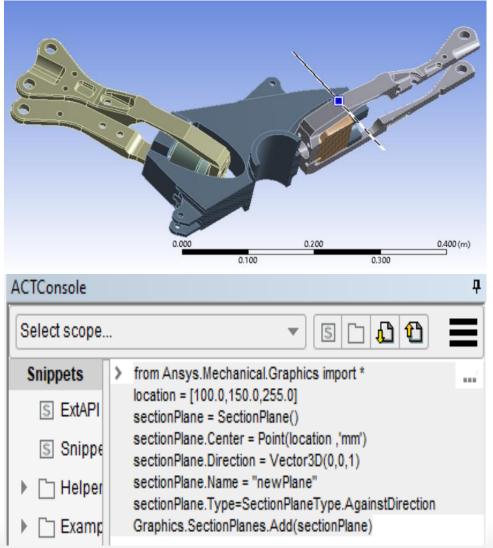
The graphics display can be exported using the following properties

- Export3D method can be used to export the 3D model in STL and AVZ format.
- ExportImage exports the image to a PNG, JPG, TIF, BMP, or EPS file.
- Graphics3DExportSettings and GraphicsImageExportSettings lets modify settings (background,

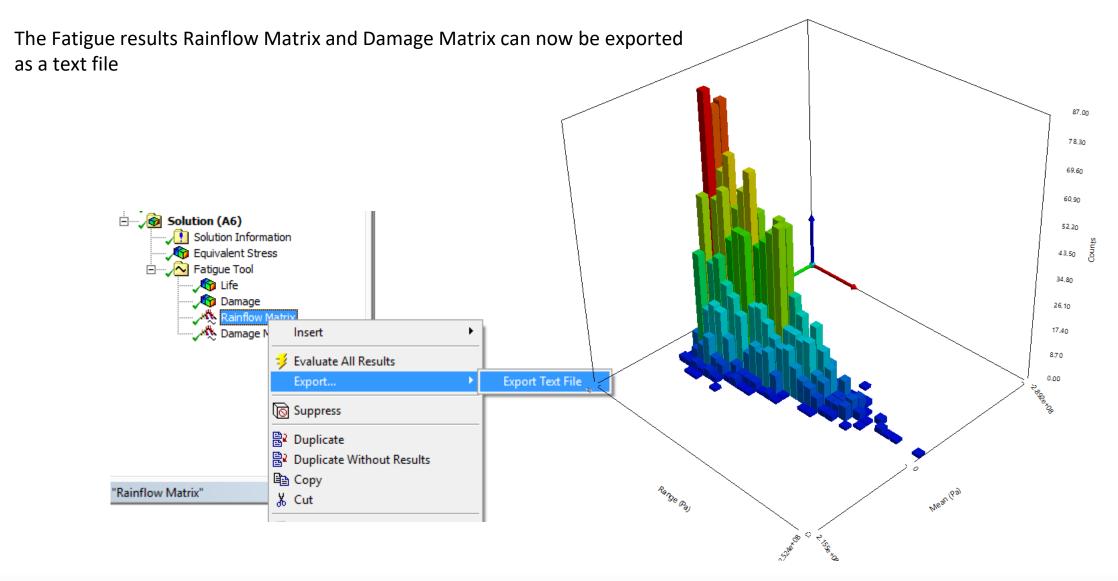
Mechanical

Scripting API improvements - Section Plane

This allows the user to perform functionalities related to creating a slice or section plane on your model so that you can view


internal geometry, mesh, and/or result displays.

The following methods can be used to manipulate section planes:


- Add: adds a new section plane to the collection.
- Remove: remove a section plane from the collection.
- RemoveAt: remove a section plane at a given index.
- Clear: clears all section planes from the collection.

The following properties can be used to get/modify state of the section plane:

- Capping: capping style
- ShowWholeElement: element visibility of section
 plane
- Center: center point of a section plane
- **Type**: type of section plane
- Name: name of section plane
- Active: active state of section plane
- Direction: normal direction of section plane

Fatigue results export

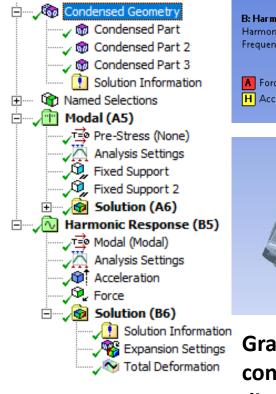
CMS in WB-Mechanical

ANSYS 2019R1 update

Outline

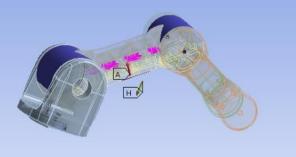
CMS exposure for MSUP harmonic response analysis

Bushing formulation exposure for Bushing joint which can be internal to Condensed Part


Support of Acceleration loads in MSUP harmonic using Substructure restart procedure

Improve disk space and performance by performing file reference for use pass and expansion pass instead of file copy

MSYS


CMS exposure for MSUP harmonic analysis

Standalone and Linked MSUP Harmonic analysis can now use CMS based matrix reduction method to work with Substructures.

B: Har monic Response Harmonic Response Frequency: 0. Hz

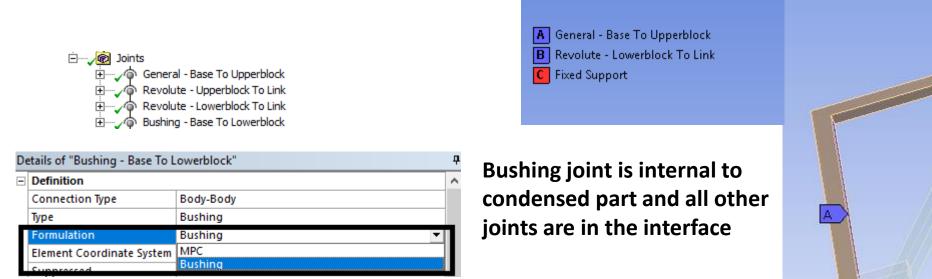
A Force: (Real) 1.e+005, (Imag) 0. N H Acceleration: 100. m/s²

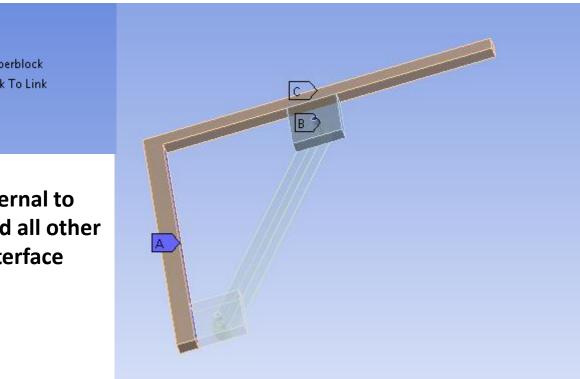


Graphics are made transparent for condensed part and MDOF is displayed on condensed parts Expansion Settings Worksheet

Expansion Settings

Condensed Part
Condensed Part 2
Condensed Part 3


Expansion enabled for Condensed Part 2 and seen in the deformation results



Bushing formulation for CMS based Modal + Harmonic

Bushing joint now supports Bushing formulation which can be internal to Condensed Part and can be included in Generation Pass for Modal and Harmonic analysis

Condensed Part

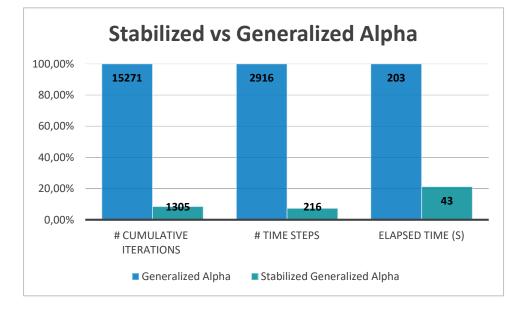
Acceleration load support for Harmonic analysis

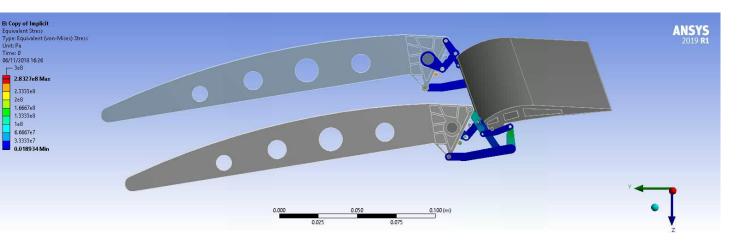
CMS based MSUP Harmonic analysis supports Acceleration load. Since Acceleration is scoped to All Bodies in the analysis, it needs to be applied to both Condensed Part which are within substructures as well as Non-Condensed parts. To support the Acceleration load, substructure restart procedure is performed in Harmonic analysis during use pass.

```
/com, ********* Performing Substructuring Re-start **********
/gopr
/clear
/FILNAME, cp133
                    ! Jobname = cp133
resume, cp133, db
/solu
antype, subs, restart ! restarting the substructuring analysis
acel,1,0,0
                                       ! generate reduced LV1
solve
acel,0,1,0
                                       ! generate reduced LV2
solve
fini
/clear
```

Improve disk space and performance

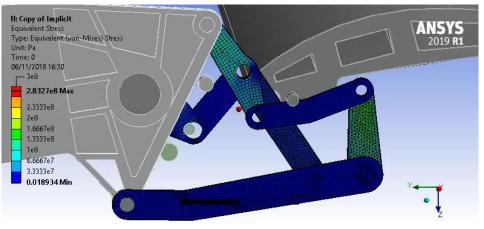
MODDIR is activated in the Super-element Generation pass of MAPDL solution. This enables the Use pass and Expansion pass to do file reference, when required. This avoids file copy of the LN22 files and other files shown below to improves disk space and performance due to file copy


Rigid Body Dynamics


ANSYS 2019 R1 update

Stabilized Generalized Alpha time integration

- A posteriori correction of constraints leads to high frequencies oscillations that needs
 Penalizes NR convergence and timesteps
- New Stabilized Generalized Alpha time integration enforces constraints while
 preserving dynamic equilibrium → no spurious oscillation → faster convergence and
 larger time steps



On-demand CMS expansion

- CMS expansion may lead to large RST files with large meshes and/or large number of time points (transient simulation) which are expensive to write/read
- → Perform expansion on the fly during post to avoid any file
- → Based on the Data Processing Framework

Medium size model: 14 Condensed Parts, 165867 nodes, 60859 elements, 102 time points

- MAPDL expansion: 4ms16, 14 RST files, total: 3.5 Gb
- On-demand expansion: 22s (deformation+stress), no RST file

Miscellaneous

- Worksheet to review step aware analysis settings •
- Ability to define restitution factor as a parameter •
- Command to output detailed contact forces
- Command to print body force balance
- 8 Customer Defects addressed.

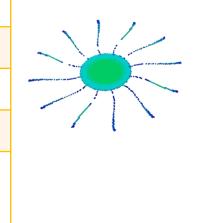
Vorksheet									
Analysis Settings									
Properties	Step 1	Step 2	Step 3	Step 4					
Step Controls									
Step End Time	0.1	0.5	1.	5.					
Auto Time Stepping	Off	On	On	On					
Carry Over Time Step	N/A	Off	On	On					
Time Step	1.e-002	N/A	N/A	N/A					
Initial Time Step	N/A	1.e-003	N/A	N/A					
Minimum Time Step	N/A	1.e-007	1.e-007	1.e-007					
Maximum Time Step	N/A	5.e-003	5.e-002	5.e-002					
Output Controls									
Store Results At	All Time Points	All Time Points	All Time Points	Equally Spaced Points					
Value	N/A	N/A	N/A	100					

		Details of "Revolute - B01 To B1"			д
etails of "Frictionless - A0 To B0"		Ξ	Reference		
			Scoping Method	Geometry Selection	
E Scope			Applied By	Remote Attachment	
Scoping Method Geometry Selection			Scope	2 Faces	_
Contact 1 Face			Body	B01	
Target 1 Face			Coordinate System	Reference Coordinate System	
Contact Bodies A0			Behavior	Rigid	-
Target Bodies B0			Pinball Region	All	
Protected No			Mobile		
Definition			Scoping Method	Geometry Selection	_
Type Frictionless			Applied By	Remote Attachment	
Advanced			Scope	2 Faces	_
Pinball Region Program Controlled			Body	B1	
P Restitution Factor 1			Initial Position	Unchanged	
RBD Contact Detection Program Controlled			Behavior	Rigid	_
			Pinball Region	All	
		Stops		_	
			RZ Min Type	Stop	
			RZ Min	0. °	
			RZ Max Type	None	
			P Restitution	1.	~

Linear Dynamics

Cyclic Symmetry Analysis – Initial State

Objective


Include non-zero initial stress or strain in a cyclic symmetry analysis

Feature

Support INISTATE command (DTYP = STRE or EPEL)

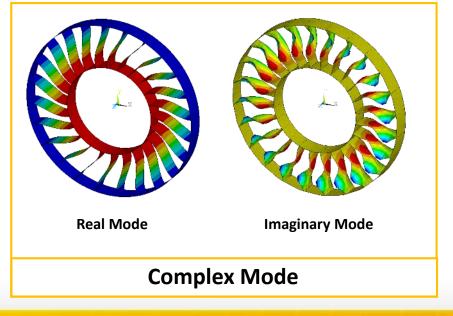
Example Scenario: Jet Engine Simulation

- Read in the initial state for room temperature and impose it on a cyclic symmetry sector model. The initial stress/strain is, for example, caused by machining process.
- Specify the temperature profile and rotational speed at the engine condition. Run a prestress static analysis.
- Run a linear perturbation cyclic symmetry modal analysis.

Residual stresses from additive manufacturing is an example of an initial stress state

2.505e+09

1.744e+09 9.835e+08 2.230e+08


Cyclic Symmetry Analysis – Damped Modal Analysis

Objective

Include damping and/or Coriolis effect in a cyclic symmetry modal analysis

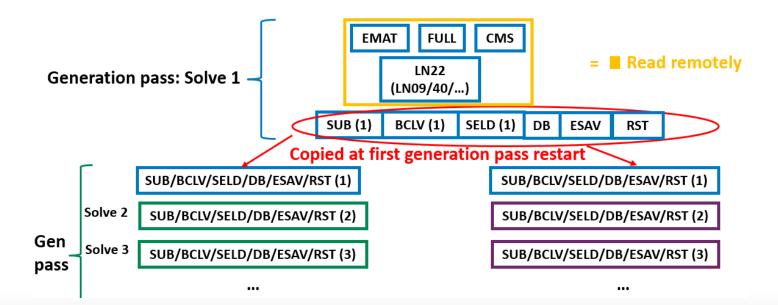
Feature

Support damped eigensolvers (MODOPT, DAMP and QRDAMP)

February 5, 2019

***** INDEX OF DATA SETS ON RESULTS FILE *****

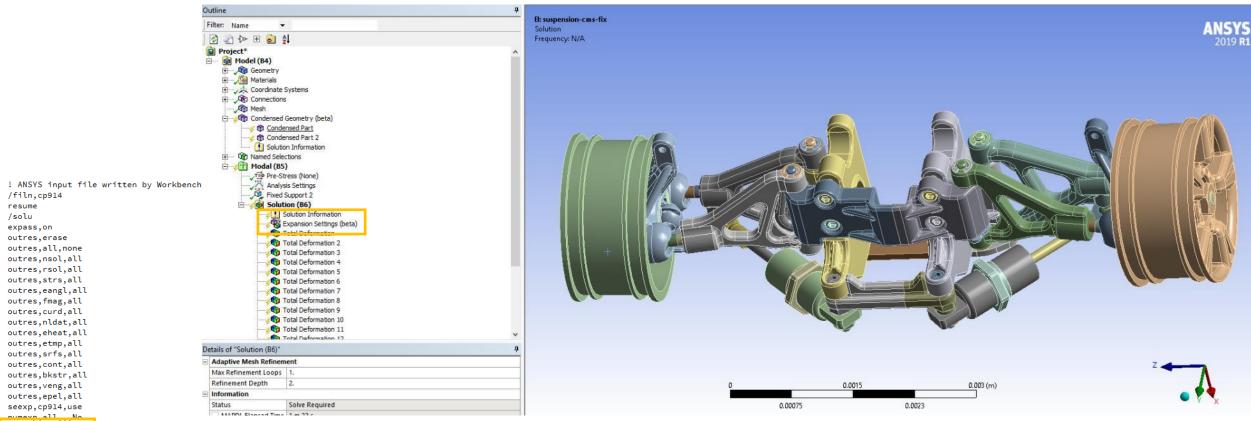
SET	TIME/FREQ(I	Damped)	T	IME/FREQ(Undamped)	LOAD STEP	SUBSTEP	CUMULATIVE	HRM-INDEX
(49,50)	-0.74981	103.28	j	103.28	3	1	25	2
(25,26)	-0.75499	103.68	j	103.68	2	1	13	1
(27,28)	-0.75499	103.68	j	103.68	2	2	14	1
(1,2)	-0.83780	109.85	j	109.85	1	1	1	0
(29,30)	-1.0441	123.89	j	123.90	2	3	15	1
(31,32)	-1.0441	123.89	j	123.90	2	4	16	1
(51,52)	-1.0583	124.80	j	124.81	3	2	26	2
(3,4)	-1.2854	138.53	j	138.54	1	2	2	0
(33,34)	-4.8091	274.32	j	274.36	2	5	17	1
(35,36)	-4.8091	274.32	j	274.36	2	6	18	1
(5,6)	-6.3740	316.45	j	316.51	1	3	3	0
	damping	oscillatio	n					
	Complex frequencies							ANSYS °


Substructuring / CMS – Remote Files Usage

Objective

Optimize substructuring/CMS file handling for Mechanical scenarios. Avoid copies. Access files remotely.

Feature


Support MODDIR command during the first solution of the first restart of a generation pass, or during the first solution of the expansion pass.

Substructuring / CMS – Remote Files Usage

\AppData\Local\Temp\AFT_R191_suspension.tmp\AFT_R191_suspension_files\dp0\global\MECH\SYS-1\Condensed Geometry\cp914\',cp914

Application: Mechanical Scenario

modd,on,'C:\Users

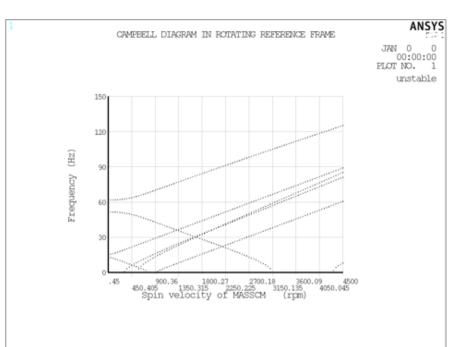
fini

/gopr
*get,_walldone,active,,time,wall
_preptime=(_wallbsol-_wallstrt)*3600
_solvtime=(_wallasol-_wallbsol)*3600
_totaltim=(_walldone-_wallstrt)*3600
/wb,file,end ! done with WB generated input

Rotating Structure Analysis - Rotating Reference Frame Analysis

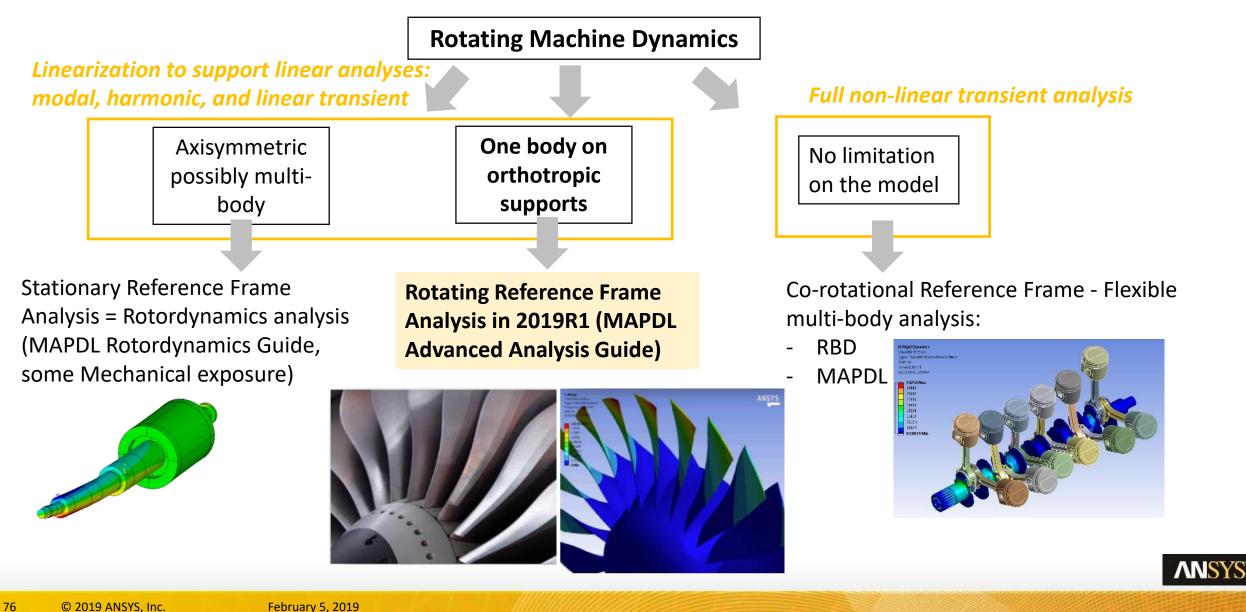
Objective

Extend the applicability and improve the accuracy of the rotating reference frame analyses

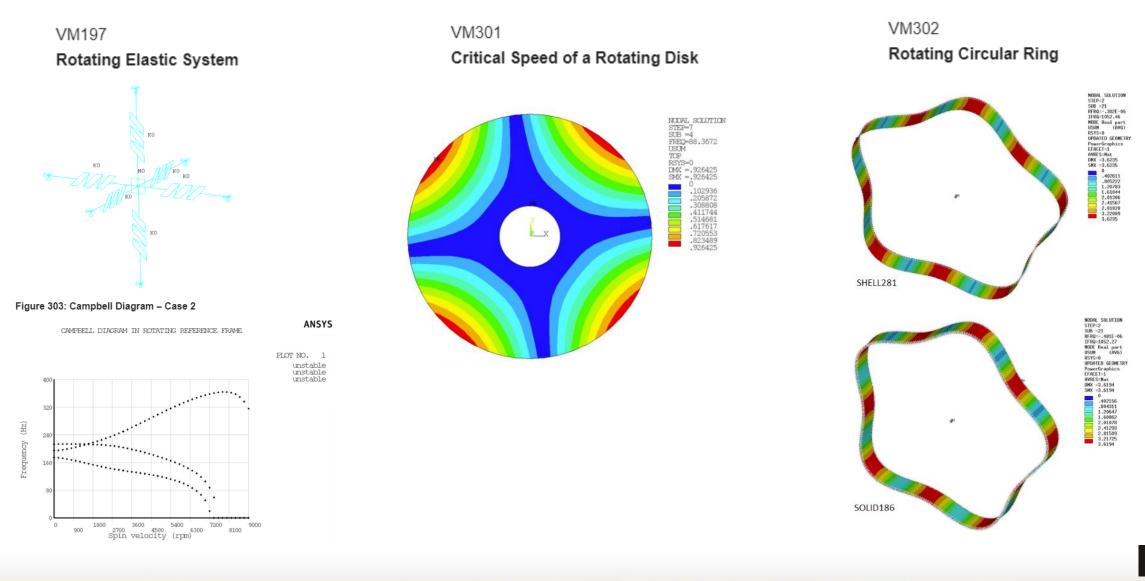

Features

When activating CORIOLIS, ON:

- Coriolis and spin-softening on rotational degrees of freedom
- SYNCHRO procedure
- Campbell procedure
- Rotating damping effect
- Periodic transient forces (COMBI214)


Documentation

Enhanced and cleaned-up dedicated part in Advanced Analysis Guide. 3 new Verification Manual examples.



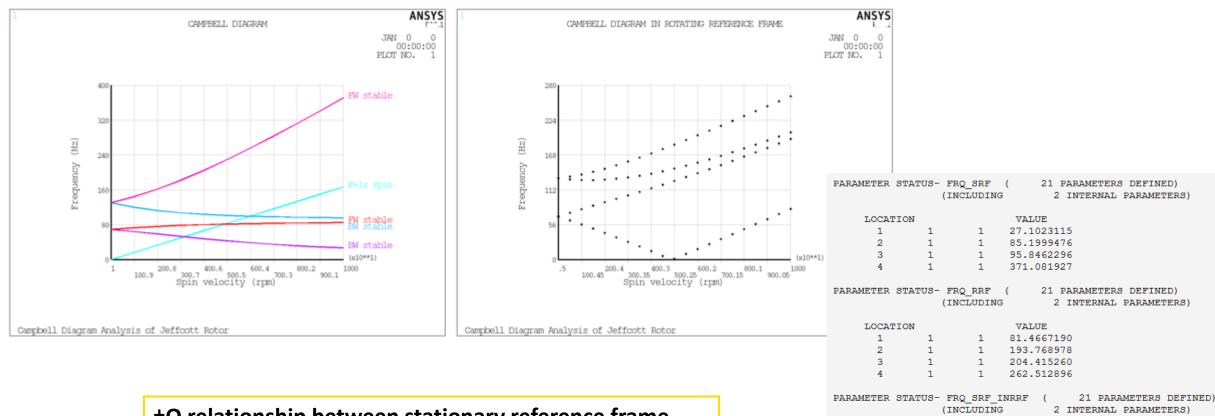
Rotating Structure Analysis - Rotating Reference Frame Analysis

Rotating Structure Analysis - Rotating Reference Frame Analysis – Verification Manual Examples

LINEAR DYNAMICS

ANSYS

VALUE

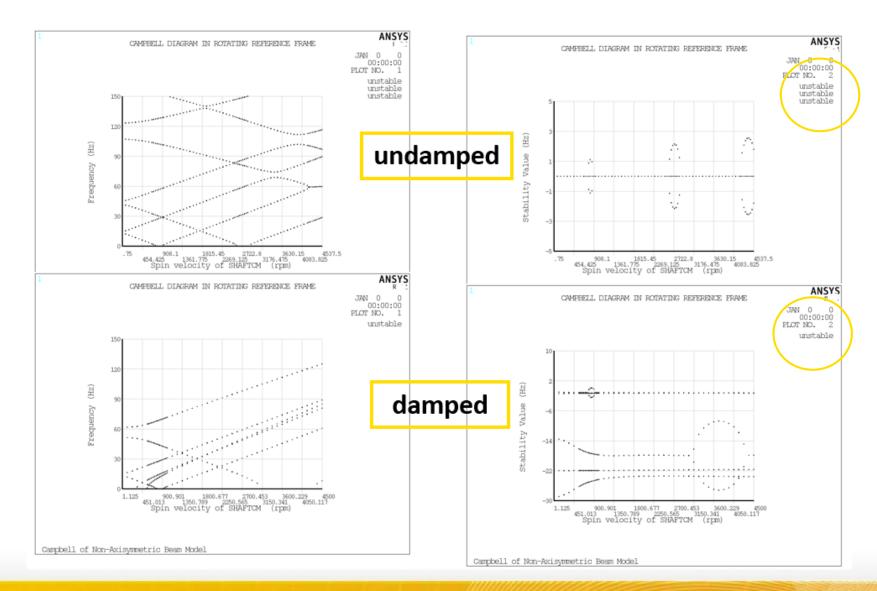

81.4667190

193.768978 204.415260 262.512896

LOCATION

1

Rotating Structure Analysis - Rotating Reference Frame Analysis – Jeffcott Rotor



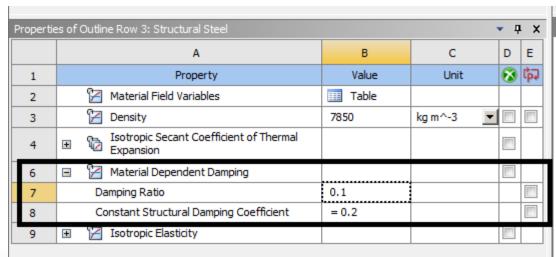
±Ω relationship between stationary reference frame and rotating reference frame frequencies is verified

ANSYS

LINEAR DYNAMICS

Rotating Structure Analysis - Rotating Reference Frame Analysis – Stability and Damping Effect

Asymmetric shaft (BEAM188) with disks (MASS21) on bearings (COMBI214)


2019 R1 Linear Dynamics, CMS, Acoustics & NVH ANSYS 2019R1 update

Outline

- 1. Material dependent damping based on Constant Structural Damping Coefficient
- 2. Bushing formulation (COMBI250) for Modal and Harmonic analysis
- 3. Participation factor output for Modal analysis
- 4. Command snippet enhancement to exclude solve command for a particular step or number of steps
- 5. CMS
- 6. Acoustics & NVH

Material based Constant Structural Damping Coefficient

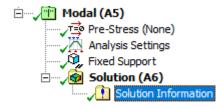
- 1. Engineering data supports Material Dependent Damping group, which consists of two properties Damping Ratio and Constant Structural damping coefficient.
- 2. Constant structural damping coefficient is supported in 2019 R1 for Full Harmonic, Fully damped Modal, Reduced Damped Modal (When complex solution is set to Yes) and Full transient analysis.
- 3. The default of Constant Structural Damping Coefficient is set to twice of that of Damping Ratio specified by the user

Material based Constant Structural Damping Coefficient

- 1. In current release, Constant Damping Coefficient in Engineering data has been renamed to Damping Ratio
- 2. The naming convention for these properties are made consistent across MAPDL and Mechanical and also within Analysis Settings and Engineering data in Mechanical
- 3. If Damping ratio is specified for the material on database resumed prior to 2019 R1 release, then it will add Material Dependent Constant Structural Damping Coefficient and will make its value twice of Damping ratio
- 4. Material Dependent Damping Ratio is no longer applicable for Full Harmonic analysis
- 5. Material Dependent Damping based on Damping ratio is sent as MP,DMPR command and Material Dependent Damping based on Constant Structural Damping Coefficient is sent to the solver as MP,DMPS command. Please see this <u>link</u> for supported analysis

Bushing formulation (COMBI250) for Modal + Harmonic

Bushing formulation is now supported for Bushing joints in Modal and Harmonic analysis (COMBI250 element). This formulation supports element coordinate system and only diagonal terms can be specified for Stiffness and Damping coefficients. It can be used as internal to Condensed Part for CMS analysis. In prior releases, only MPC formulation was used behind the scene (formulation property is new)


	Lowerblock"	
Definition		/
Connection Type	Body-Body	
Туре	Bushing	
Formulation	Bushing	•
Element Coordinate System	MPC	
Suppressed	Bushing	
tails of "Bushing - Base To L	owerblock"	д
tails of "Bushing - Base To L Definition	owerblock"	.
-	owerblock" Body-Body	.
Definition		
Definition Connection Type	Body-Body	
Definition Connection Type Type	Body-Body Bushing	.
Definition Connection Type Type Formulation	Body-Body Bushing Bushing	 Ψ
Definition Connection Type Type Formulation Element Coordinate System	Body-Body Bushing Bushing Coordinate System	 Ψ
Definition Connection Type Type Formulation Element Coordinate System Suppressed	Body-Body Bushing Bushing Coordinate System	<u></u>

rksheet						
lushing - Base	To Lowerbloo	ck				
			tiffness Coefficient			
		5	timess coefficien	ts		
Stiffness	Per Unit X (m)	Per Unit Y (m)	Per Unit Z (m)	Per Unit θx (°)	Per Unit θy (°)	Per Unit θz (°)
Δ Force X (N)	10000					
Δ Force Y (N)		10000				
∆ Force Z (N)			10000			
∆ Moment X (N·m)				174.53		
∆ Moment Y (N·m)					174.53	
∆ Moment Z (N·m)						174.53
		D	amping Coefficient	ts		
Viscous Damping	Per Unit X (m)	Per Unit Y (m)	Per Unit Z (m)	Per Unit θx (°)	Per Unit θy (°)	Per Unit θz (°)
∆ Force * Time X (N⋅s	10.					
∆ Force * Time Y (N.s		10.				
∆ Force * Time Z (N⋅s			10.			
∆ Moment * Time X (0.17453		
∆ Moment * Time Y (0.17453	
∆ Moment * Time Z I						0.17453

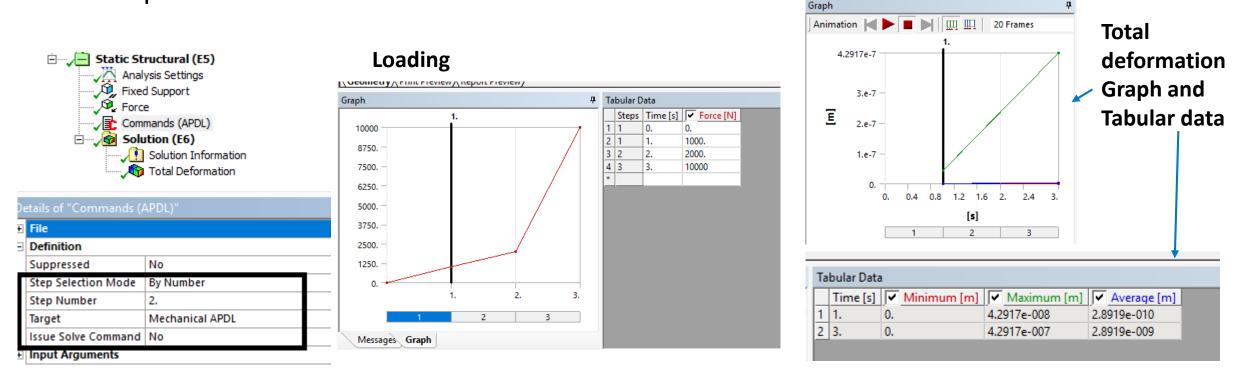
Participation factor for Modal analysis

Participation factor summary is now supported for 2D Modal analysis

Solution Information		
Solution Output	Participation Factor Summary	
Summary Type	Ratio of Effective Mass to Total Mass	
Newton-Raphson Residuals	0	
Identify Element Violations	0	
Update Interval	2.5 s	
Display Points	All	
FE Connection Visibility		

Participation Factor Summary

Ratio of Effective Mass to Total Mass

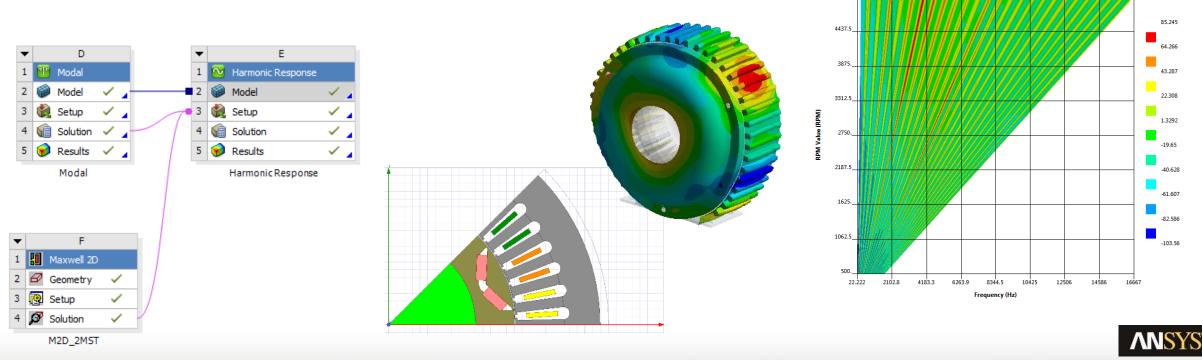

Mode	Frequency [Hz]	X Direction	Y Direction	Z Direction	Rotation X	Rotation Y	Rotation Z
1	250.66	1.4878e-032	1.4536e-033				6.8699e-032
2	284.11	1.7018e-032	1.5673e-032				4.1905e-033
3	433.9	4.8859e-032	1.6899e-032				2.003e-032
4	479.54	4.7643e-030	3.3906e-030				9.7104e-031
5	740.28	2.008e-023	1.0429e-024				0.8202
6	821.87	0.18719	0.12571				9.0954e-024
Sum		0.18719	0.12571	0.	0.	0.	0.8202

NOTE: The data displayed in the current worksheet is with respect to the solver unit system.

Commands enhancement for Issuing solve command

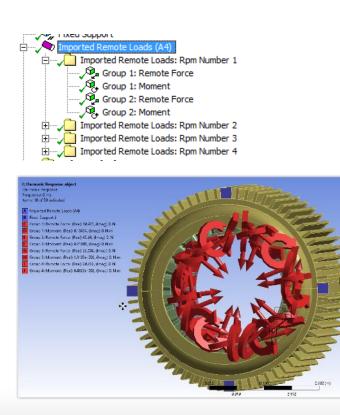
Commands object now supports new property Issue Solver Command. This property when set to No for applicable steps using Step Selection Mode, then the solve command is not issued for those load steps. In the example below the solve is skipped for second load step and can be seen from the results

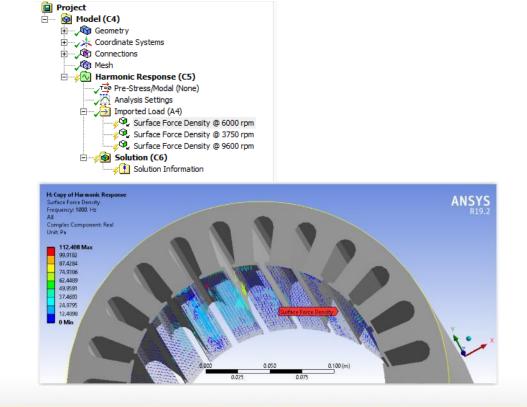
Acoustics & NVH


ANSYS 2019R1 update

Maxwell-Mechanical: Multiple RPMs & ERP Waterfall Diagram

For Electric Machine design, it is important to analyse the acoustic signature of the system. In that goal, Equivalent Radiated Power can be calculated for a range of Rotational Velocities and Frequencies. We have develop a fully automated workflow to reach this goal.

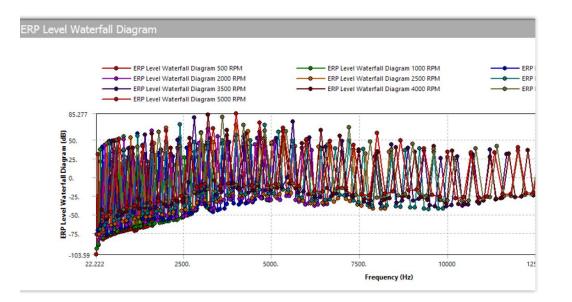

- ✓ Perform DX Parametric study in Maxwell
- ✓ Transfer EMAG forces to Mechanical for all RPMs
- ✓ Plot ERP Waterfall Diagram

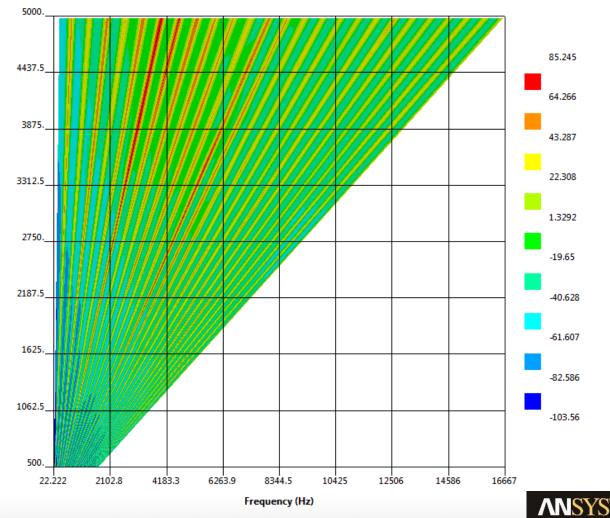

Maxwell-Mechanical: Multiple RPMs & ERP Waterfall Diagram

Two mapping strategies available depending on the geometry compliance:

- ✓ Object Based: Integrated Forces / Moments
- ✓ Mesh Based: Surface Force Densities

February 5, 2019

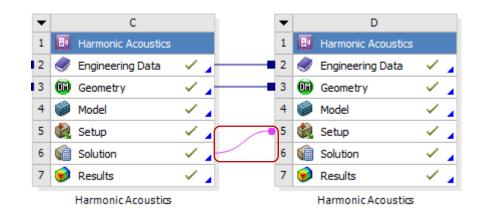


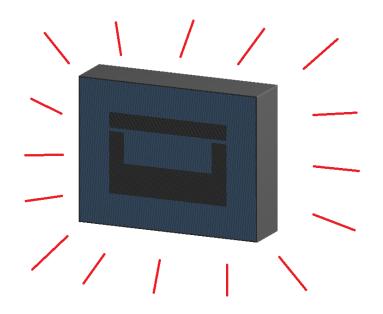


Maxwell-Mechanical: Multiple RPMs & ERP Waterfall Diagram

Equivalent Radiated Power waterfall diagram results provide a global acoustic signature for a range of RPMs and frequencies.

RPM Value (RPM)

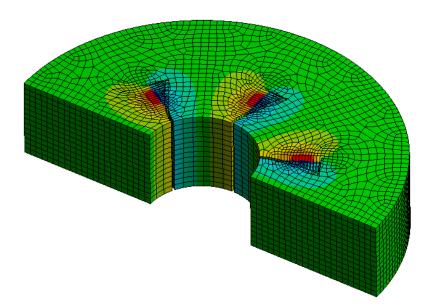




Harmonic Acoustics to Harmonic Acoustics Coupling

FSI Harmonic Acoustics can be coupled to downstream Harmonic Acoustics.

Interesting to analyse the radiated noise of a structure containing liquid (transformer ...)

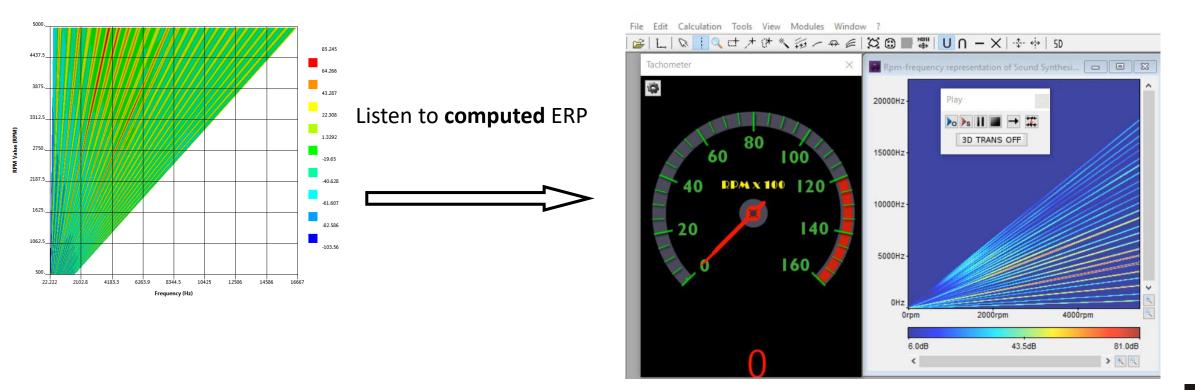


Cyclic expansion option for FSI cyclic symmetry

Cyclic Expansion options for available in Acoustics:

- \checkmark Number of sectors to display
- ✓ Starting sector

De	etails of "Solution (B6)"	д
+	Solution	
+	Adaptive Mesh Refinement	
+	Information	
Ξ	Cyclic Solution Display	
	Number of Sectors	3.
	Starting at Sector	1.
	Expansion Method (Beta)	New



ACOUSTICS

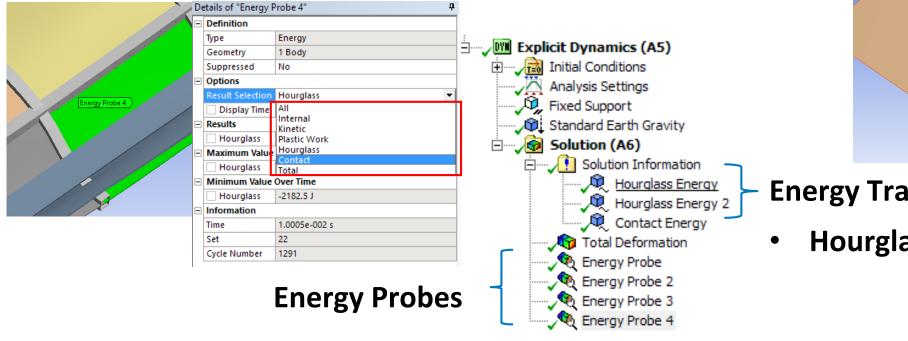
Export Results to XML format for VRXP Sound Dimension (Beta)

Allows XML export for Equivalent Radiated Power and Sound Power Level. XML file can be read in Optis VRXP Sound Dimension to synthesize the sound and create a .WAV file.

Option to ignore damping in modal Acoustics (Beta)

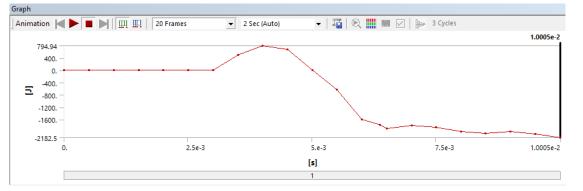
Available option to ignore acoustic damping material properties (viscosity...) which are defined by default for Air and Water materials. That allows to avoid using Damped solver without deleting those properties in Engineering Data.

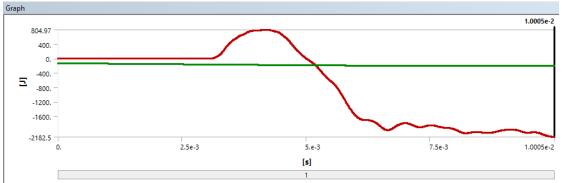
Details of "Analysis Settings"	#
Options	
Max Modes to Find	6
Limit Search to Range	Yes
Range Minimum	1.e-002 Hz
Range Maximum	1.e+006 Hz
Solver Controls	
Damped	No
Solver Type	Program Controlled
Output Controls	
Damping Controls	
Ignore Acoustic Damping (Beta)	Yes 💌


Mechanical Explicit Dynamics

ANSYS 2019 R1 update

ANSYS


Mechanical Explicit Dynamics – 2019 R1

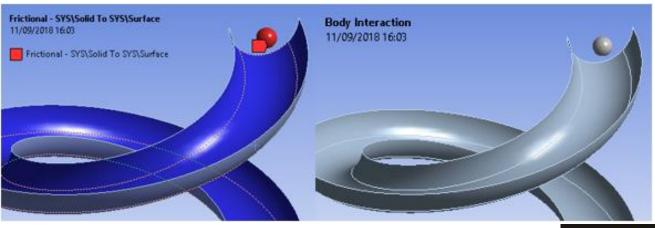


Energy Trackers now include:

• Hourglass & Contact Energy

Energy probes can be added <u>after</u> the solve

Energy Trackers need to be defined before the


solve

Mechanical Explicit Dynamics – 2019 R1

New Manual Contact Treatment = <Lumped/Pairwise>

- <Lumped>: default original behaviour
- <Pairwise>: new behaviour:
 - Affects the *Manual Contact Regions:*
 - Scoping:
 - Contact region: nodes in contact
 - Target region: faces in contact
 - Symmetry behaviour:
 - Accounted for in the solver
 - Friction:
 - Definition is applied per contact pair
 - Should not conflict if so: error.

D	etails of "Body Interactions"	д
	Advanced	
	Contact Detection	Trajectory
	Formulation	Penalty
	Sliding Contact	Connected Surface
	Manual Contact Treatment	Pairwise 💌
	Shell Thickness Factor	Lumped
	Nodal Shell Thickness	Pairwise
	Body Self Contact	Program Controlled
	Element Self Contact	Program Controlled
	Tolerance	0.2


Mechanical Explicit Dynamics – 2019 R1

• The worksheet for stepawareness is available now for Damping Controls

Analysis Settings			
Properties	Step 1	Step 2	Step 3
Step Controls			
Step End Time	1.e-003	2.e-003	3.e-003
Damping Controls			
Static Damping	0.	0.	0.

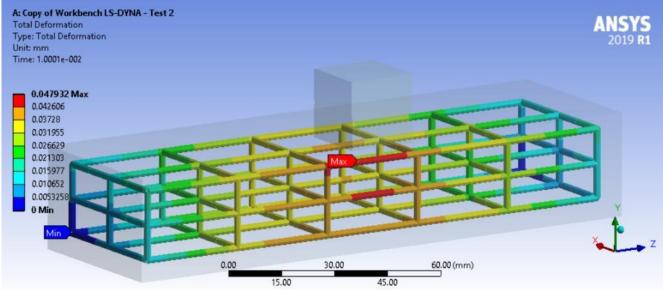
Beta

Tabular acceleration input

~	tans of Acc	ciciation
-	Scope	
	Geometry	All Bodies
-	Definition	
	Define By	Vector
	Magnitude	Tabular Data
	Direction	Click to Change
	Suppressed	No

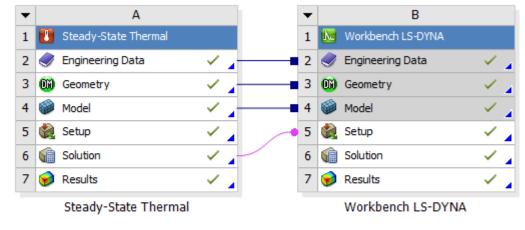
ANSYS

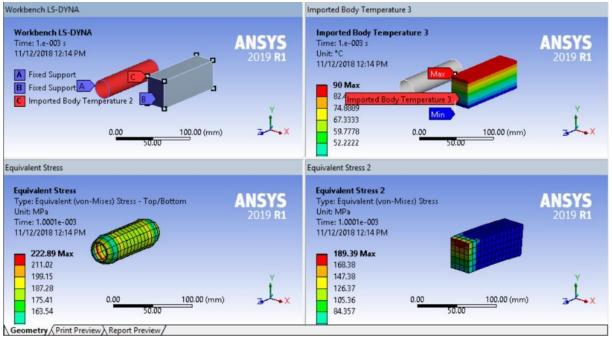
Workbench LS-DYNA


ANSYS 2019 R1 update

Body Interactions of Type Reinforcement

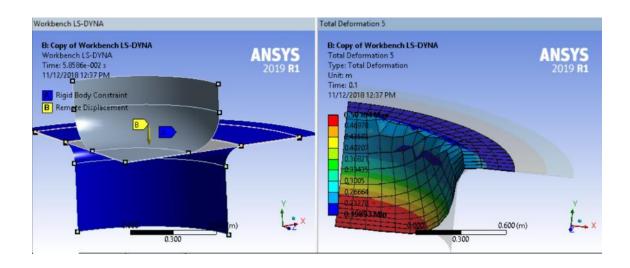
Body Interactions with type reinforcement are now available with LS-DYNA. They allow modeling of reinforced solid structures, like reinforced concrete.

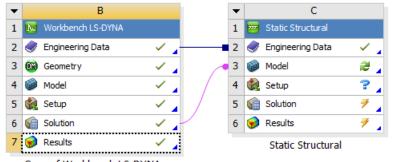

Nodes in the reinforcement beams and the matrix in which they sit do not have to be coincident.

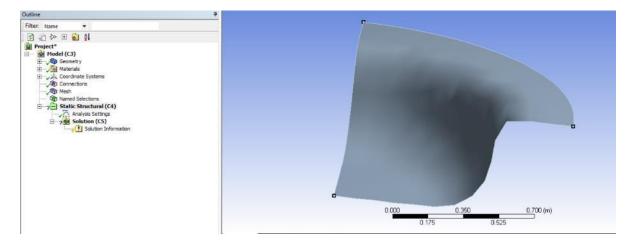


Imported Temperature

Transfer links have been enabled between steady state thermal , transient thermal calculations and Workbench LS-DYNA. allowing to transfer body temperatures from a thermal calculation to Workbench LS-DYNA.

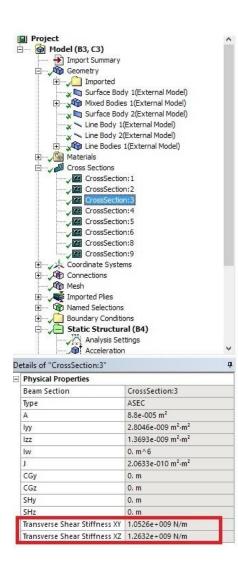

Temperature induced deformations can now be taken account in a LS-DYNA explicit calculation




Deformation Transfer

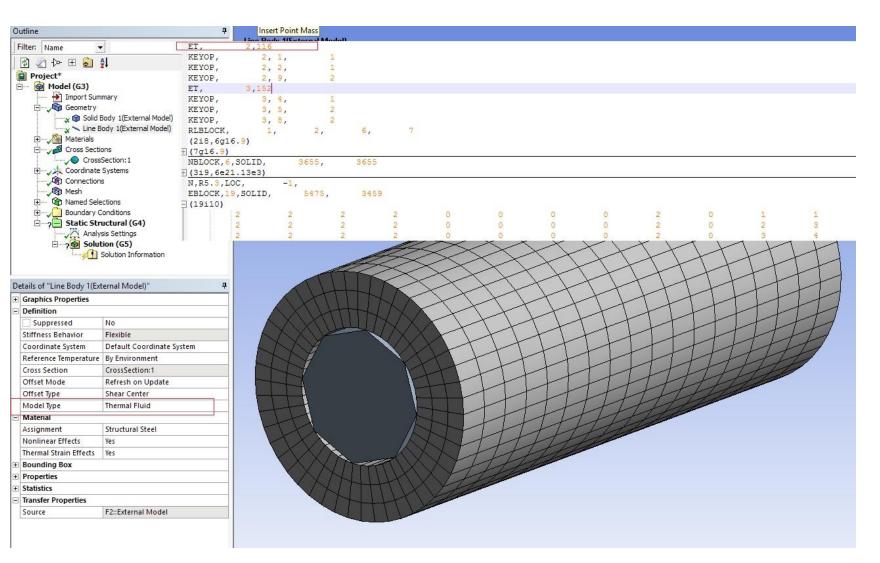
The deformation from a Workbench LS-DYNA calculation, can now be transferred to downstream systems, like Static Structural, allowing a user to initiate those simulations from a deformed state.

Copy of Workbench LS-DYNA

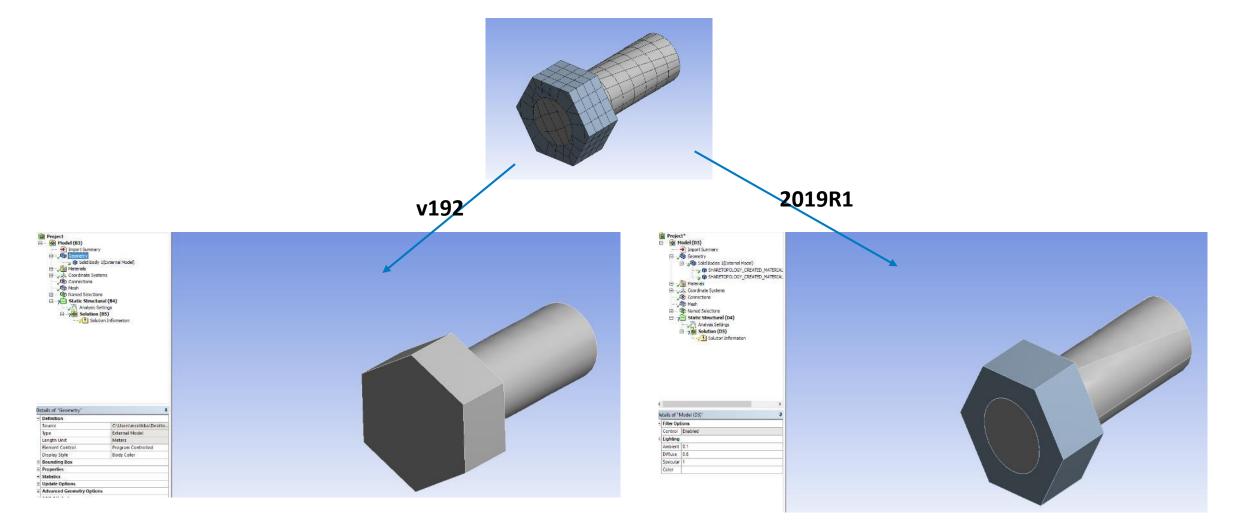


External Model

ANSYS 2019 R1 update

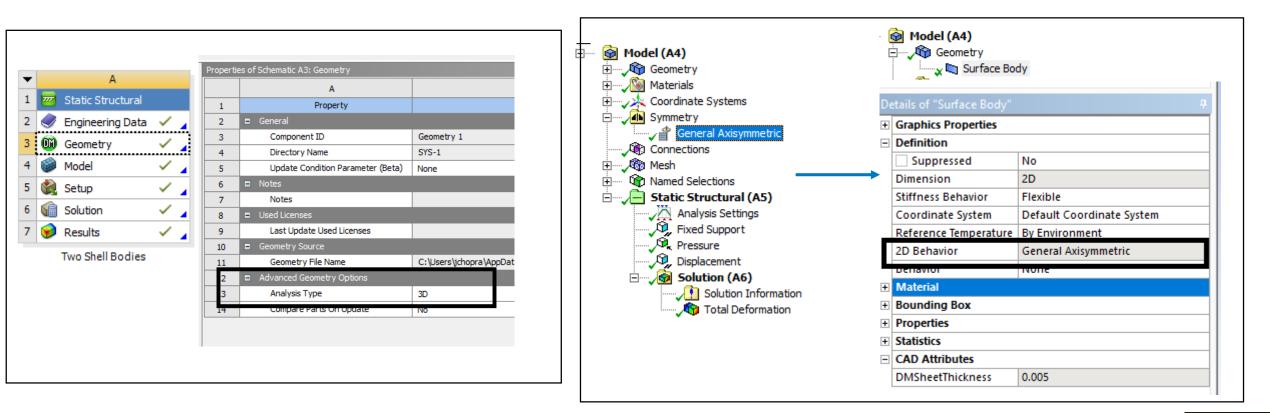

Import Beam shear transverse stiffness for Nastran

PBAR	2	3	4	5	6	7	8	9	10
	PID	MID	A	I1	I2	J	NSM		
	C1	C2	D1	D2	E1	E2	F1	F2	
	K1	K2	I12						
1	2	3	4	5	6	7	8	9	10
PBEAM	PID	MID	A(A)	I1(A)	I2(A)	I12(A)	J(A)	NSM(A)	
	C1 (A)	C2 (A)	D1 (A)	D2 (A)	E1 (A)	E2 (A)	F1 (A)	F2 (A)	
	SO C1	X/XB	A D1	11 D2	12 F1	I12 F2	J F1	NSM F2	-
	SO	X/XB	Α	I1	12	I12	I	NSM	1
The last two	C1	C2	D1	I1 D2	12 E1	I12 E2	J F1	NSM F2	
The last two	C1 continu	C2 ations are:	D1	D2	E1	E2	F1	F2	
The last two	C1	C2	D1				-		



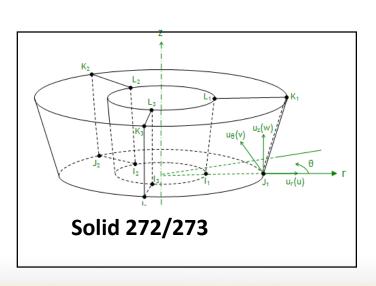
Import fluid116 elements for MAPDL

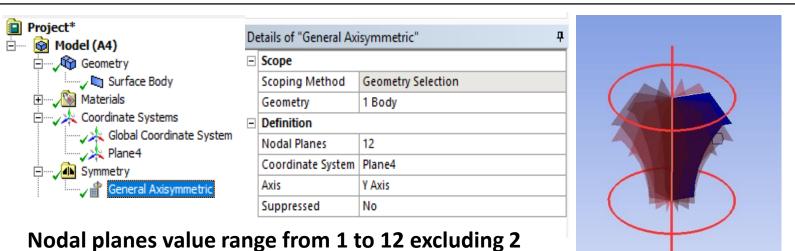
Import ICEM .uns files with topology (Bodies/Faces)


2019 R1 General Axisymmetric

ANSYS 2019R1 update

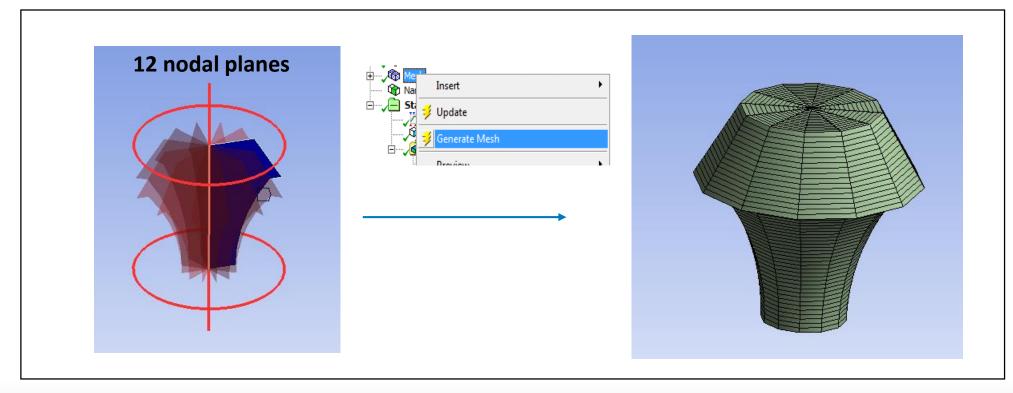
General Axisymmetric in WB-Mechanical


Applicable for 3D Static Structural analysis. General Axisymmetric definition is added under Symmetry folder and when scoped to 2D/Surface body makes the behavior of that Body as General Axisymmetric



General Axisymmetric Definition

- 1. General Axisymmetric (Solid 272/273) introduces Fourier series into interpolation function to describe the change of displacements in the Circumferential (θ) direction.
- 2. General Axisymmetric object in mechanical takes Nodal planes input to define number of planes and Coordinate system with Axis input to specify the circumferential direction.
- 3. The graphics view shows the Axis and Orientation by drawing the line and circle. And it shows the number of nodal planes by showing the transformed geometry in different nodal planes



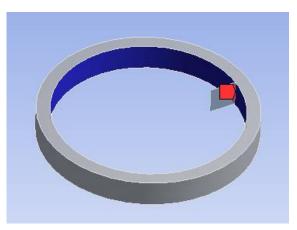
Axis definition must not cut through the body

General Axisymmetric Mesh

- 1. General Axisymmetric mesh is generated using Generate Mesh/Update action on Mesh folder
- 2. The base mesh is created on the surface body and then General Axisymmetric mesh is generated on all the nodal planes as post operation on base mesh.

Loads and Boundary Conditions

- 1. Nodal loads are directly applied through the Named selections scoped to Nodes. These loads can be non-axisymmetric loads as nodes can be picked from any nodal plane
- 2. Pressure, Remote force, Moment and Displacement load can be applied to the geometric scoping which can be edge or vertex. If edge of General Axisymmetric body is selected for load application, then load is applied to all the nodal planes. For Pressure load using Surface effect option, SURF159 is created to apply the load

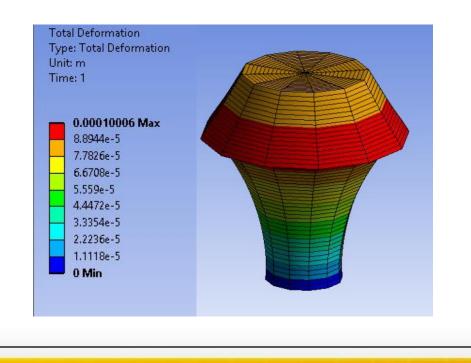


General Axisymmetric behavior with Contacts

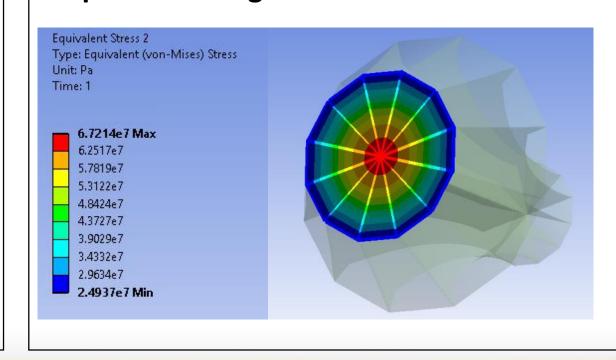
- 1. Node to surface contact is created between General Axisymmetric body in contact with other bodies. CONTA175 is created for the contact side which will be General Axisymmetric body and TARGET170 element is created for 3D target surface
- 2. Only Bonded contact is supported when Nodal plane 1 is defined
- 3. Number of nodal plane should be same when General Axisymmetric body is in contact with other General Axisymmetric body

			D	etails of "Bonded - Inner_Rin	g_2D To Outer_Ring"	Ļ
	General Axisymmetric 11/20/2018 1:55 PM General Axisymmetric	Edge to Face contact between General Axisymmetric body and	Ε	Scope		
				Scoping Method	Geometry Selection	
				Contact	1 Edge	
				Target	1 Face	
				Contact Bodies	Inner_Ring_2D	
				Target Bodies	Outer_Ring	
		Solid body		Protected	No	
			E	Definition		
				Туре	Bonded	
				Scope Mode	Manual	
				Suppressed	No	
			E	Advanced		
				Formulation	Program Controlled	
				Small Sliding	Program Controlled	
				Penetration Tolerance	Program Controlled	
				Elastic Slip Tolerance	Program Controlled	
				Normal Stiffness	Program Controlled	
				Update Stiffness	Program Controlled	
				Pinball Region	Program Controlled	
			Ε	Geometric Modification		
				Target Geometry Correction	None	

Nodes in all nodal planes for the General Axisymmetric scoped edge is considered for contact



ANSYS

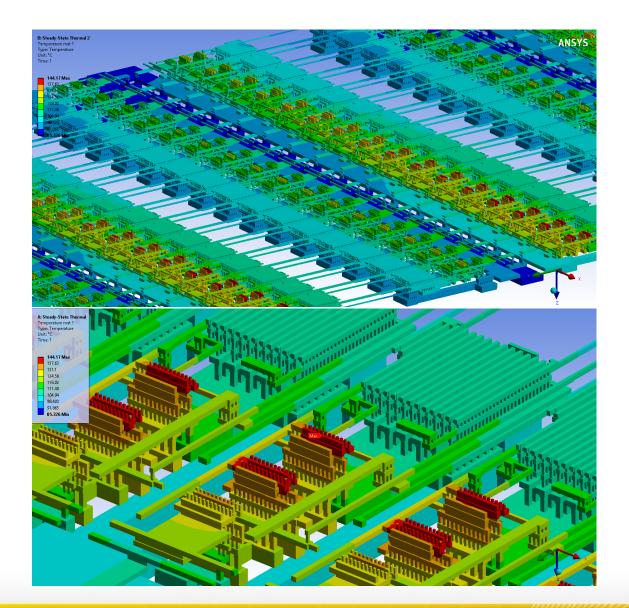

Results

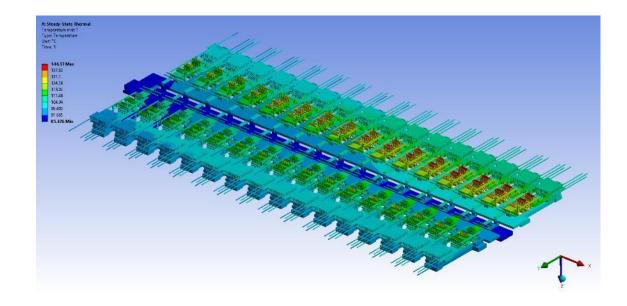
1. All regular results can be extracted on the General Axisymmetric body scoping or Mesh. The results shown below are Deformation and Stress which are symmetric in the circumferential direction in the presence of Axisymmetric loading applied in this case

Total deformation scoped to All Bodies

Stress shown in all nodal planes when scoped to an edge

MAPDL Elements

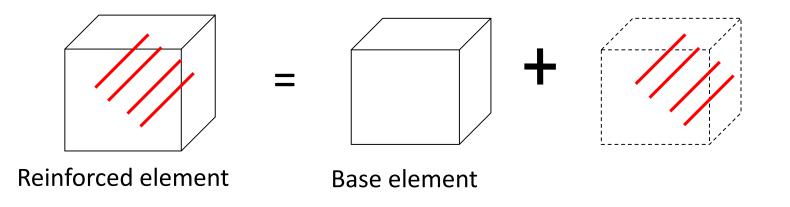

ANSYS 2019 R1 update



List of 2019 R1 Features

- Thermal Reinforcing Elements
- 10-Node Tetrahedral Thermal Solid
- Enhanced Pre- & Post-processing for Reinforcing Elements
- General Distributed Load for Solid Elements
- Hybrid Cable Element
- Linear Perturbation for General Axisymmetric Elements
- Anisotropic Structural and Dielectric Losses for Piezoelectric Analysis

THERMAL REINFORCING: Motivation



Complex PCB thermal model

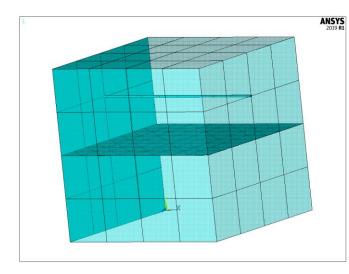
~ 72 million dof with 3D detailed mesh Extended model preparation time Excessive computational cost

THERMAL REINFORCING: Basic Approach

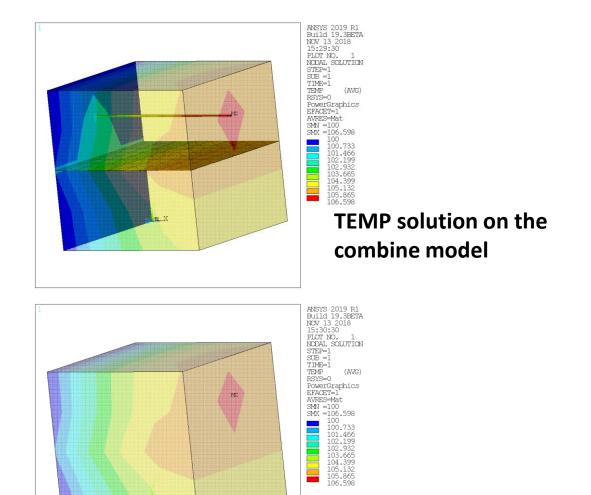
Use reduced order model for the embedded metal regions – line / plate elements Use Reinf Technology to capture the thermal solution by embedding the line/plate Elements in a base element

THERMAL REINFORCING: 2019 R1 Scope

- 3D Discrete Reinforcing element REINF264 for SOLID278/279
- 3D Smeared Reinforcing element REINF265 for SOLID278/279
- Support both uniaxial and homogeneous options for Reinf265
- Provide lower & higher order options
- Allow base material removal
- Analysis options (static & transient & quasi)
- The base elements must be homogeneous (ie. KYOP3=0)
- EREINF command modification for thermal to structural conversion and load application



TEMP solution on the base


ANSYS

solid elements

THERMAL REINFORCING: Example

- Discrete and smeared members
- Heat generation load on the members

XIX

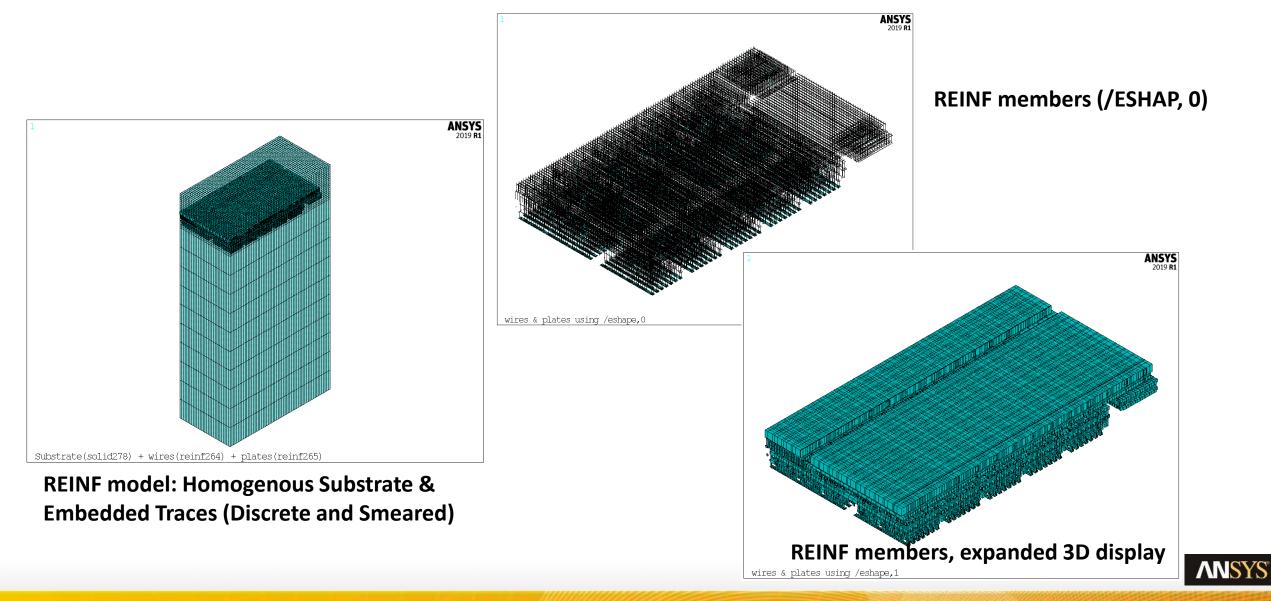
ANSYS 2019 RI NOV 13 2018 PLCT NO. 1 NOV 13 2018 PLCT NO. 1 NOL SOLUTION STEP-1 TIME-1 THEP (AVG) RSYS-0 100.794 101.794 101.794 102.684 102.7974 102.685 105.398 TEMP solution on the members

Command Enhancements for Reinforcing Elements

EGID – new command to specify group Id for mesh200 element

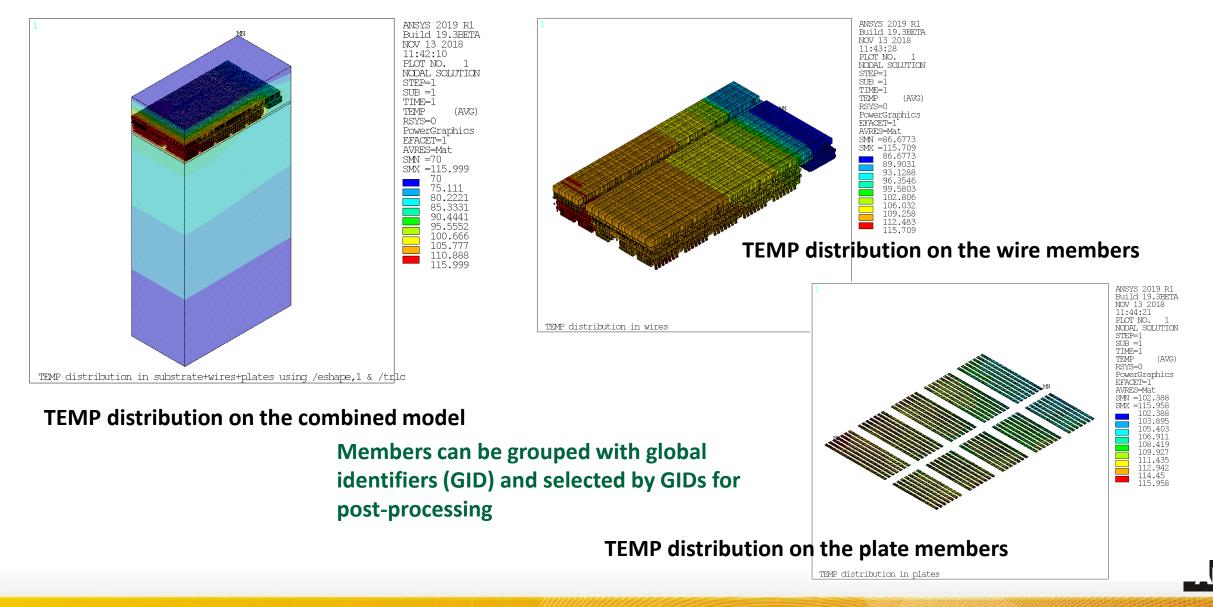
EMODIF – allow EGID modification for all elements

EREINF – allow for REINF element update based on base element


BFE – can be used with mesh200, reinf264, reinf265 for HGEN

*GET – modified to return group identifier, number of members for selected REINF element

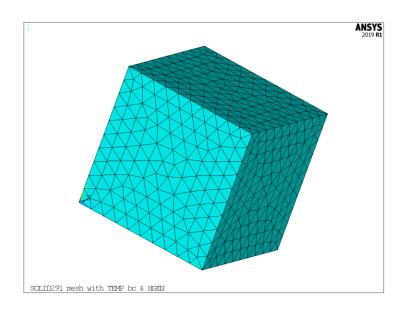
*GET – modified to return min/max TEMP for specified or selected group identifier

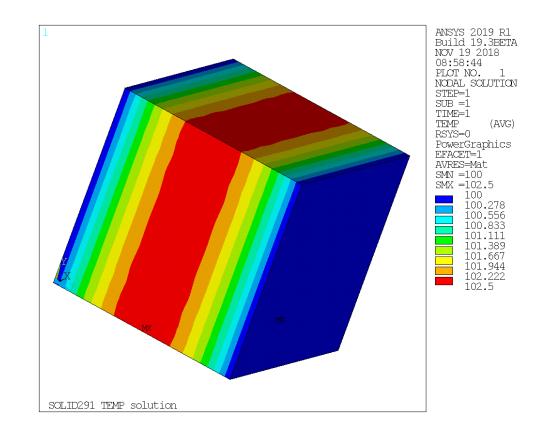

*VGET – modified to return array of min/max TEMPS for specified or selected group identifier

THERMAL REINFORCING: Chip Thermal Analysis

SYS

THERMAL REINFORCING: Chip Thermal Analysis

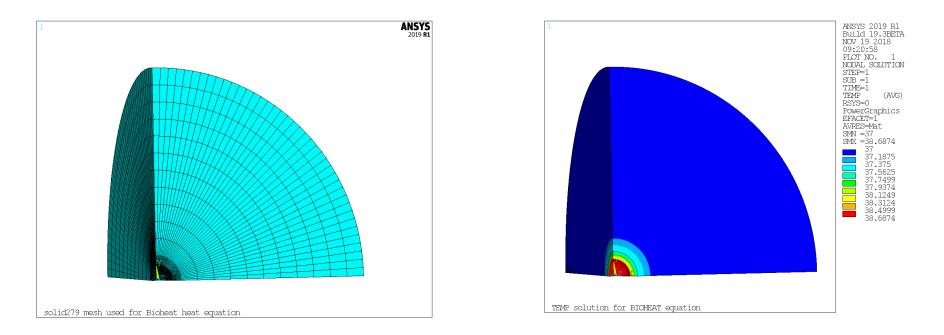



Other Thermal Enhancements: 3D 10-Node Tetrahedral

New generation 10-noded thermal tetrahedral element (beta)

-USERMATTH is supported

-TB commands can be used



Other Thermal Enhancements: Nonlinear Heat Generation

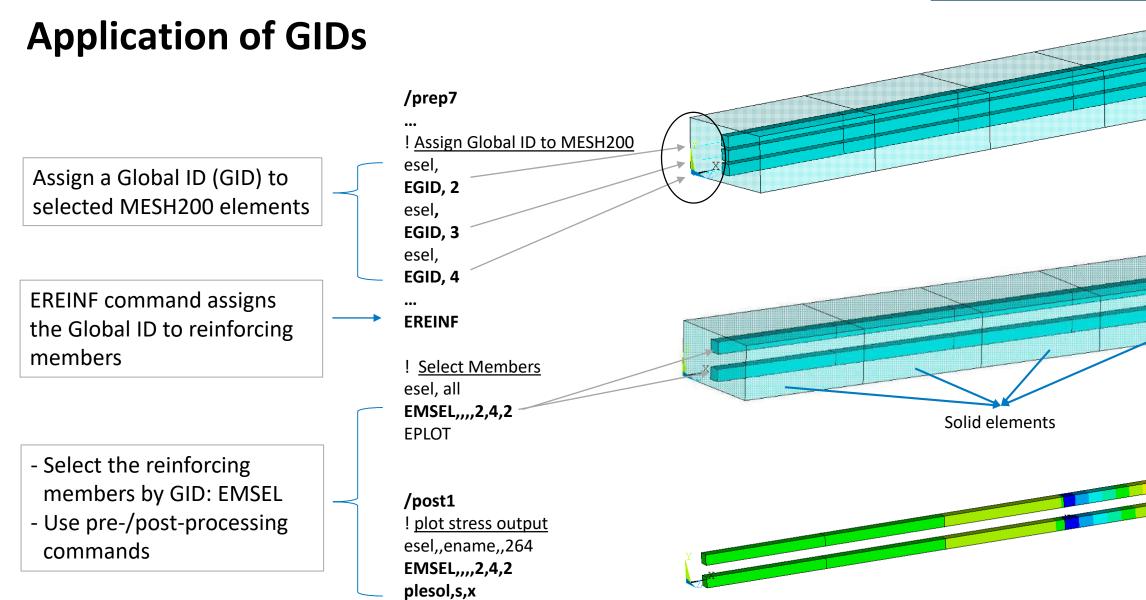
- Overcome convergence difficulty with strongly nonlinear heat generations
- SOLID278/279 have been enhanced with consistent linearization in REV 2019 R1 to address this issue

Enhanced pre-/post-processing for Reinforcing elements

Global identifiers (GID) for reinforcing members

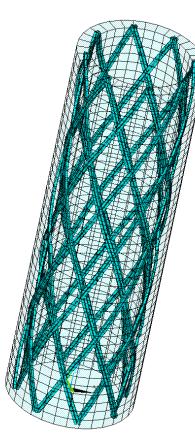
- EGID: Assign a Global ID to selected elements
- EMSEL: Select reinforcing members by GIDs
- Supported for visualization and result post-processing

Heat generation load on reinforcing members

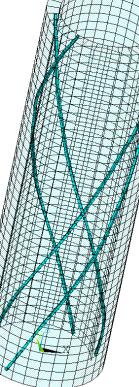

- Direct application to the members
- Application to MESH200 elements in a mesh independent procedure

*GET and *VGET new capabilities

- Retrieve member information : number of members, min/max GIDs, and more
- Retrieve min/max temperature results


Support node-based Initial State via mesh independent method

Enhanced PRNSOL command for thermal reinforcing result listing



EMSEL vs LAYER command

EMSEL,,,,1,32,8 /ESHAP,1 EPLOT

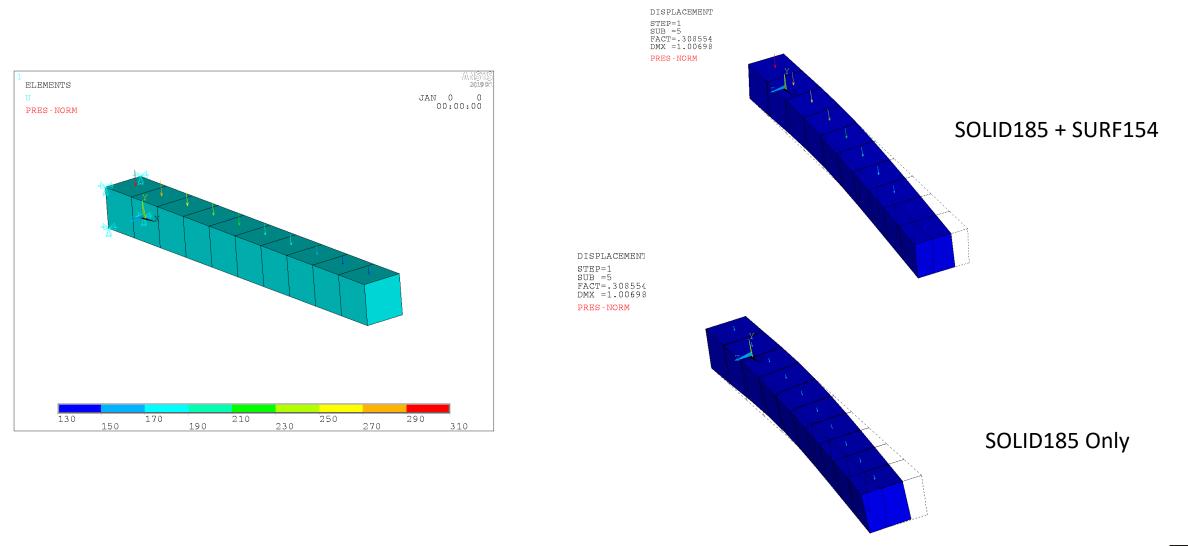
Selection reinforcing members by GIDs → More intuitive

LAYER,2 /ESHAP,1 EPLOT

Selection reinforcing members by sequence number (local)

General Distributed Load on Structural Solid Elements

- Before REV 2019 R1 solid elements are capable of normal and constant pressure only
- For general distributed load (normal, tangential, fixed direction, tapered, etc), surface effects element must be used
- Lack of direct general surface load on solid elements
- Added complications to modeling
- Difficult to use
- Affected solution robustness and accuracy
- In REV 2019 R1 (beta), the following elements are supported for general surface loading:
 - SOLID185, SOLID186, SOLID187, SOLSH190, SOLID285



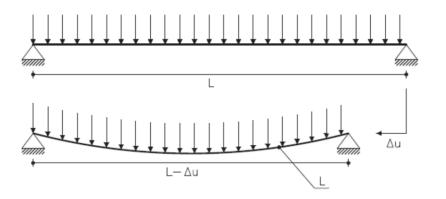
NNSYS

Eigenvalue Buckling of a Straight Pipe with Tangential Surface Load


Example 2: Global tapered pressure

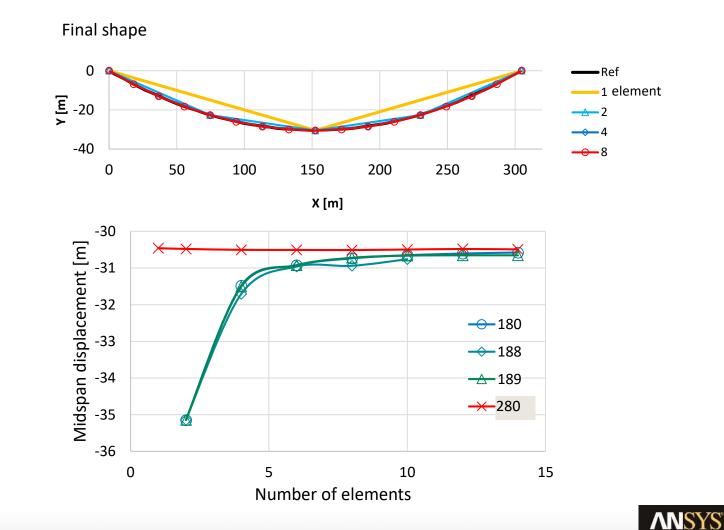
CABLE280 Element (beta)

- Current ANSYS elements suitable for simulating cables: LINK180, BEAM188, BEAM189.
- Convergence difficulty for extremely flexible cables (e.g., undersea cables)
- Require fine mesh to achieve accurate solution in both displacements and axial force.

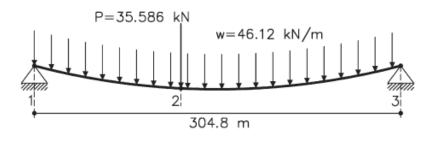


CABLE280

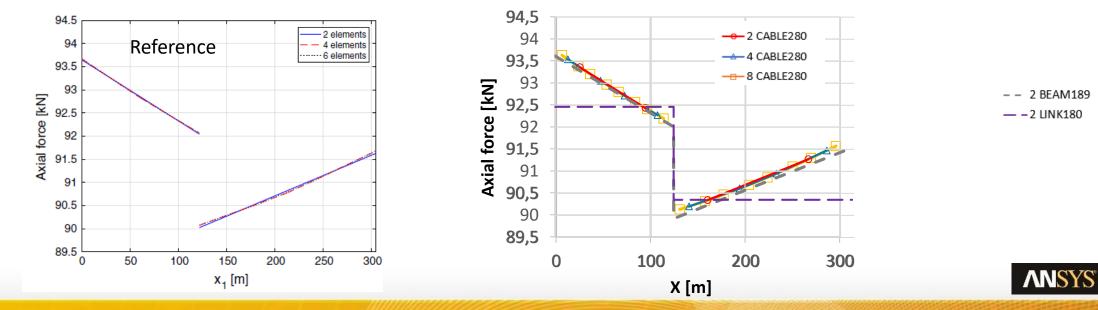
- Four nodes. Fourth orientation node required only for applying transverse load.
- Degree of freedom: UX, UY, UZ.
- Two integration points for stiffness, three integration points for mass and distributed loads.
- Mixed U/F formulation: quadratic approximation for displacements and linear approximation for axial forces.
- Axial force DOFs are incompatible and internal to the element.


CABLE280 Example #1: Suspension Cable

Cross-section area 548.4 mm^2 , elastic modulus 131 GPa, length 312.73 m.

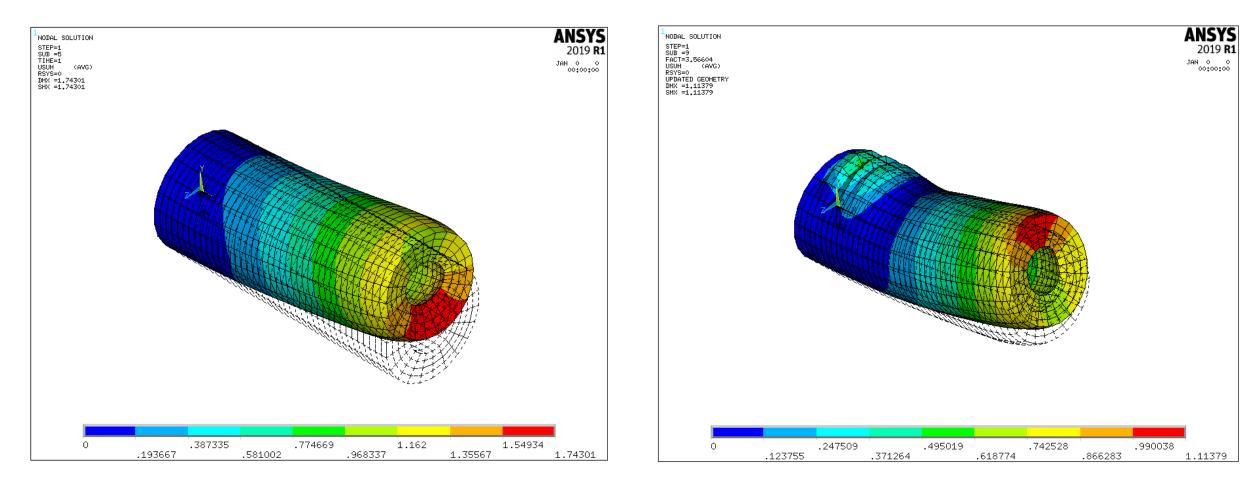

Start from a straight horizontal reference configuration, apply a prescribed displacement on the right support $\Delta u_x =$ - 7.93 m and gravity.

High accuracy even with a coarse mesh: relative error is 0.7% with one element.


CABLE280 Example #2: Suspension Cable with a point load

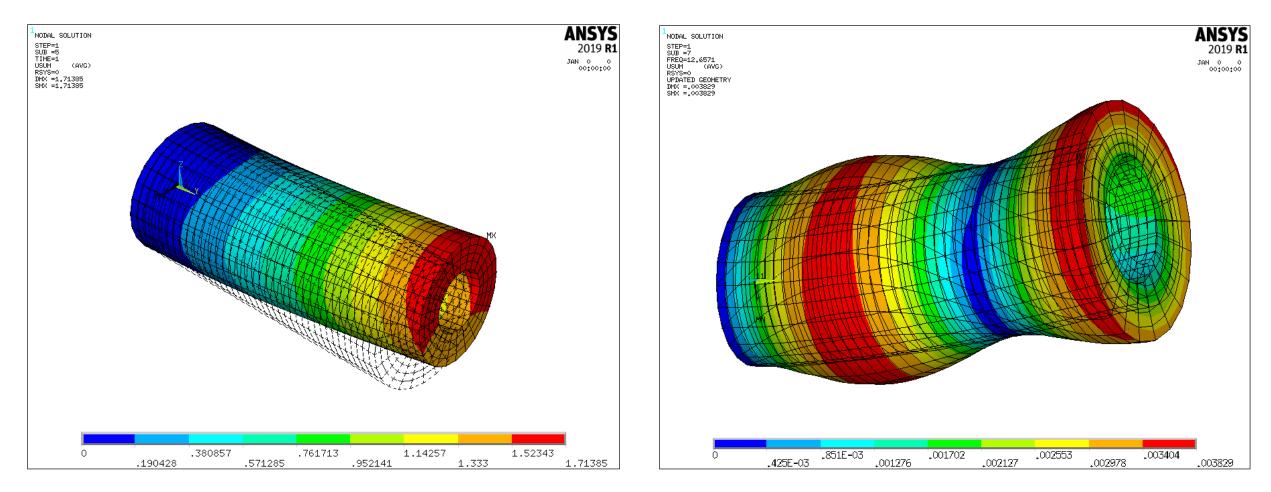
Cross-section area 548.4 mm^2 , elastic modulus 131 GPa, length 312.73 m.

Start from a straight horizontal reference configuration, apply a prescribed displacement on the right support $\Delta u_x =$ -7.93 m, gravity, and a point load at 2/5 of the cable span.


CABL280 is able to capture the jump in the axial force where a concentrated force applied, with coarse mesh.

Linear Perturbation for Axisymmetric Structures under General 3D loads

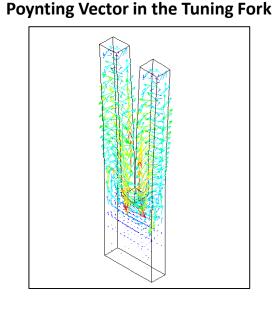
- General axisymmetric solid elements SOLID272 / 273 are powerful to simulate axisymmetric structures under asymmetric loads.
- Due to the lack of Linear Perturbation (LP) support to the elements, the application of elements in linear dynamic analysis based on large deformation or deflections was limited.
- SURF159 is supported for applying various surface loads on SOLID272/273
- All LP analysis types supported: modal, Eigenvalue buckling, full Harmonic ...
- Supports both linear and tangent material stiffness options


SOLID273 Liner Perturbation Buckling Analysis

Deformed Shape after nonlinear static analysis Subsequent LP Eigenvalue buckling mode

SOLID273/SURF159 Linear Perturbation Modal Analysis

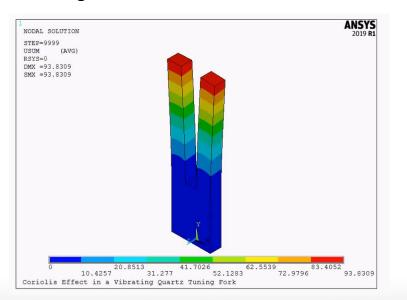
Deformed Shape after nonlinear static analysis


Subsequent LP Pre-stressed modal analysis based on the nonlinear results

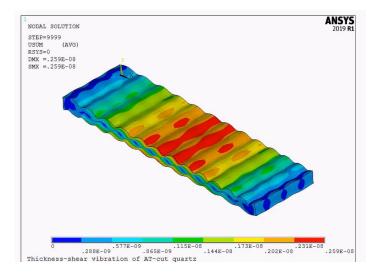
Piezoelectric Analysis Enhancements

Dynamic piezoelectric analyses that use elements PLANE223, SOLID226, and SOLID227:

- Anisotropic elastic and dielectric losses
 - Input using new material tables:
 - TB,AVIS Anisotropic viscosity
 - TB,ELST Anisotropic elastic loss tangent
 - TB,DLST Anisotropic dielectric loss tangent
 - For the simulation of loss anisotropy in bulk and surface acoustic wave devices
- Heat generation rate (JHEAT) due to the combination of structural and electric losses
 - For a subsequent thermal analysis to predict the heating of a piezoelectric devices due to structural and electric losses
- New output item: Poynting vector
 - For power flow visualization in piezoelectric devices


Piezoelectric Vibrations with Anisotropic Structural Loss

Piezoelectric harmonic analysis of quartz crystals with structural losses

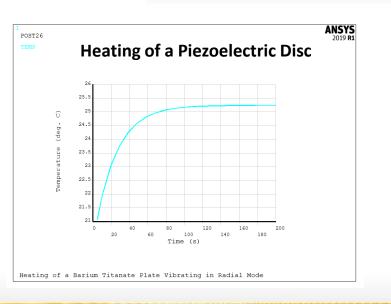

- Losses are modeled using the anisotropic viscosity table (TB,AVIS)
- Different modes of vibration have different loss factors

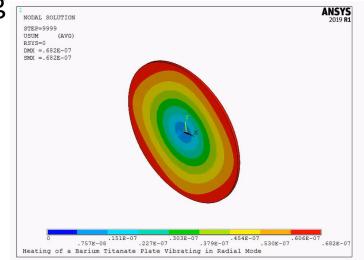
```
! Viscosity constants for Quartz, N/m**2 s
eta11= 1.37e-3
eta12= 0.73e-3
eta13 = 0.72e-3
eta14 = 0.01e-3
eta33= 0.97e-3
eta44= 0.36e-3
eta66= 0.32e-3
! Anisotropic viscosity table
tb, AVIS, 1, , , 0
tbda,1,eta11,eta12,eta13,,eta14
tbda,7,etal1,etal3,,-etal4
tbda, 12, eta33
tbda, 16, eta66, , eta14
tbda,19,eta44
tbda,21,eta44
```

Tuning fork quartz crystal with Coriolis effect vibrating in FLEXURE mode at 32.768 kHz

AT-cut quartz plate vibrating in THICKNESS SHEAR mode at 1664 kHz

Heating of a Piezoelectric Disc due to Anisotropic Electric Losses


Piezoelectric harmonic analysis of a Barium Titanate disc vibrating in radial mode at 263 kHz


- Electric losses are modeled using the dielectric loss tangent table (TB,DLST)
- Time-averaged heat generation due to these losses is stored as JHEAT and transferred to a thermal analysis via LDREAD, HGEN

 Thermal transient analysis of the disc is performed to determine the temperature rise due to dielectric heating

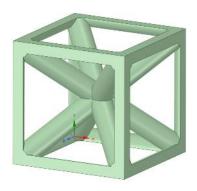
February 5, 2019

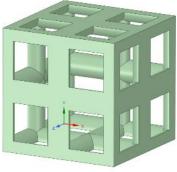
! Loss tangent coefficients in radial and axial									
directions									
tand11=0.005									
tand33=0.009									
! Dielectric loss tangent table									
TB, DLST, 1									
TBDATA,1,tand11,tand11,tand33									

Barium Titanate Disc vibrating in RADIAL mode at 263 kHz

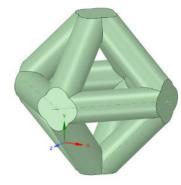
Material Designer

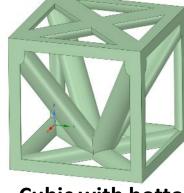
ANSYS 2019 R1 update


Content

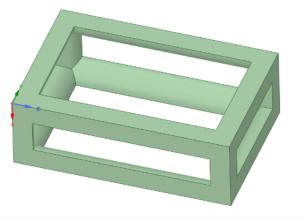

- Additional Lattice Structures
- Non-Uniformly Distributed Chopped Fiber Composites
- UI Improvements

Additional Lattice Structures


Additional Predefined Lattice Structures



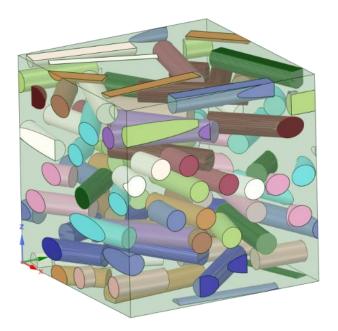
Cubic with center supports

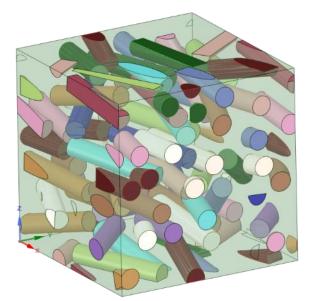


Double pyramid

Cubic with bottom center supports

 User Defined Lattice Structures with a Rectangular Cuboid as Unit Cell i.e. different sizes in each direction

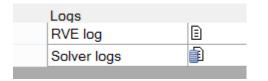



Non-Uniformly Distributed Chopped Fiber Composites

Specify a target orientation tensor

In particular, this allows to generate RVEs, in which fibers are

or oriented parallel to the XY plane



mostly aligned with the X axis

UI Improvements

• Easily Access the (Solver) Log Files

• See an Image of each Variation (for variable materials)

Name	Values[0]	Values[1]	Values[2]	Values[3]				
Image								
Parameters								
Volume Fraction	0.2	0.3	0.4	0.5				

• Easily Access the Material Designer User's Guide

Mechanical Topology Optimization

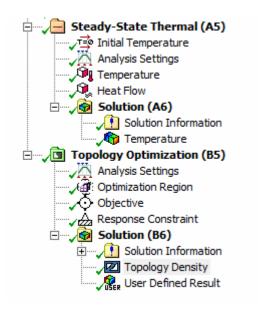
ANSYS 2019R1 update

Outline

Support thermal compliance objective and Temperature constraint optimization of Steady State Thermal system

Reload Volume Fraction from last optimized iteration

Support stress constraints in regions outside the optimization region


Support optimization of shell bodies

Support Smoothing Result for Smoothed STL

Optimization of Steady State Thermal System

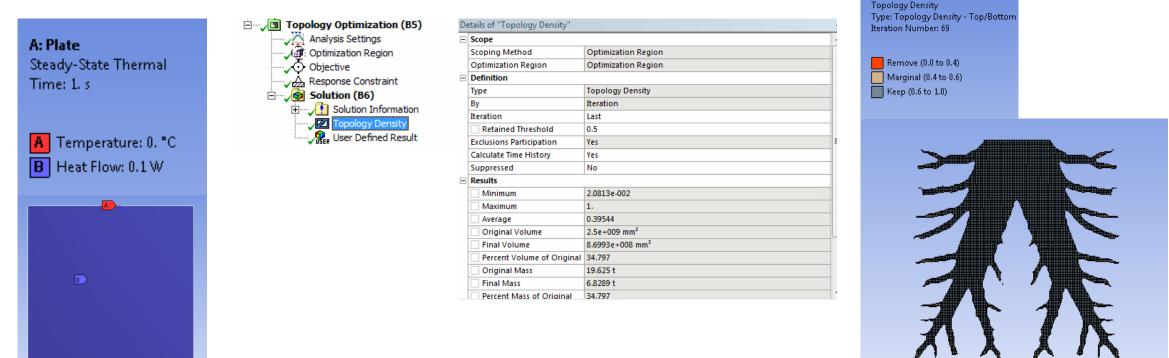
Thermal Compliance objective and Temperature Constraint associated to Steady State Thermal System is supported

Mass and Volume is supported as Optimization objective/constraint

•	А		-		В		
1	🚺 Steady-State Thermal		1		Topology Optimization		
2	🥏 Engineering Data	× .	2	0	Engineering Data	~	
3	00 Geometry	× .	3	00	Geometry	~	
4	Model	× .	4	۲	Model	~	
5	🍓 Setup	× .	- 5	٢	Setup	~	
6	Solution	× .	6	1	Solution	~	
7	🥩 Results	<	7	6	Results	~	
	Plate				Topology Optimization		

etails of "Response Constraint"	₽
Scope	
Scoping Method	Optimization Region
Optimization Region Selection	Optimization Region
Definition	·
Туре	Response Constraint
Response	Mass 💌
Define By	Mass
Percent to Retain (Min)	Volume Temperature
Percent to Retain (Max)	40 %
Suppressed	No

Worksheet			
Object	tive		

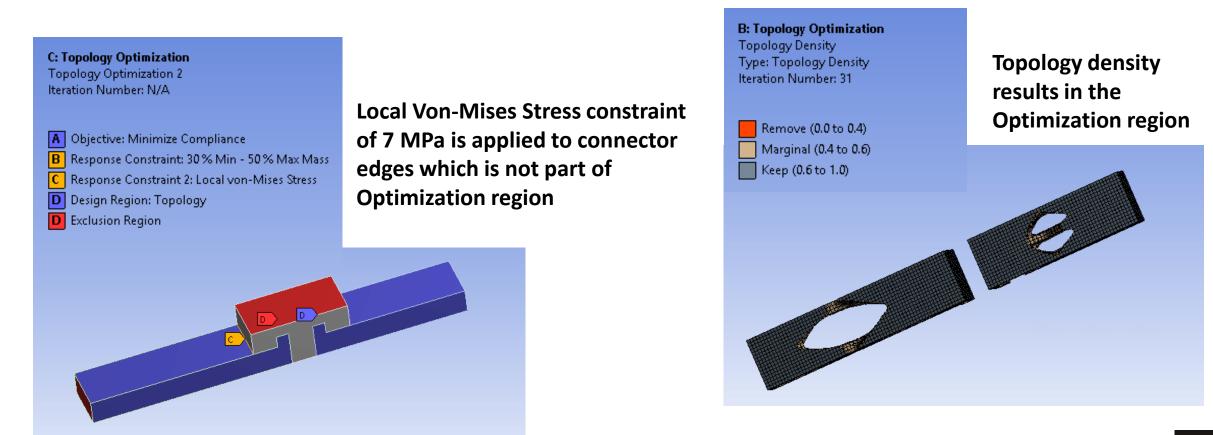

Right click on the grid to add, modify and delete a row.

Enabled	Response Type	Goal	Formulation	Environment Name	Weight	Multiple Sets	Start Step	End Step
•	Thermal Complian 🔻	Minimize	Program Controlled	Steady-State Thermal	1	Enabled	1	1
	Thermal Compliance							
	Mass							
	Volume							

Optimization of Steady State Thermal System

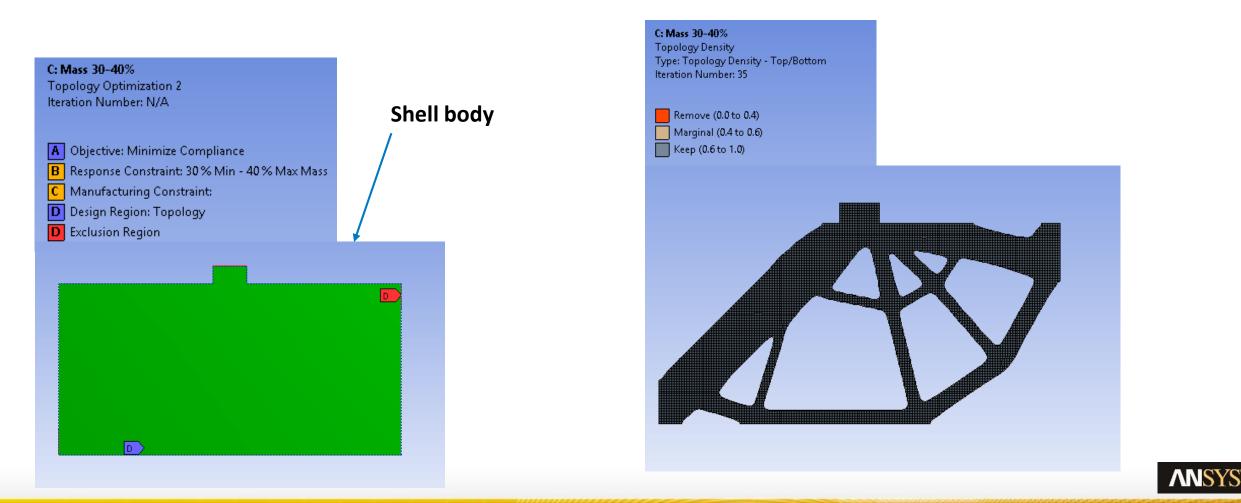
For the plate model, Temperature and Heat Flow is applied to Steady State Thermal System; Thermal compliance is chosen as Objective and Response constraint of type Mass is chose with Range specified between 1 and 40 percent. The topology density result shows the optimized topology with mass percentage as 34.797 percent, which will achieve the maximum heat transfer

- Topology Optimization 2 (C5)


Reload Volume Fraction from last optimized iteration

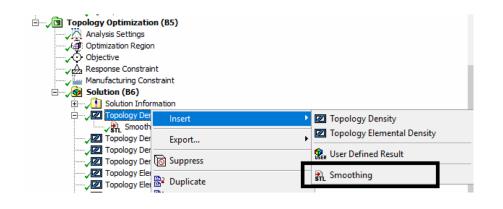
Reload Volume Fraction from last iteration to continue optimization with modification of Objectives and Response Constraints. Solve or Interrupt the optimization run, set the Reload Volume Fraction to Manual, Pick the Current Reload point based on last solved iteration, modify objective or constraints and perform optimization. This will continue optimization by reloading the volume fraction computed in the previous run

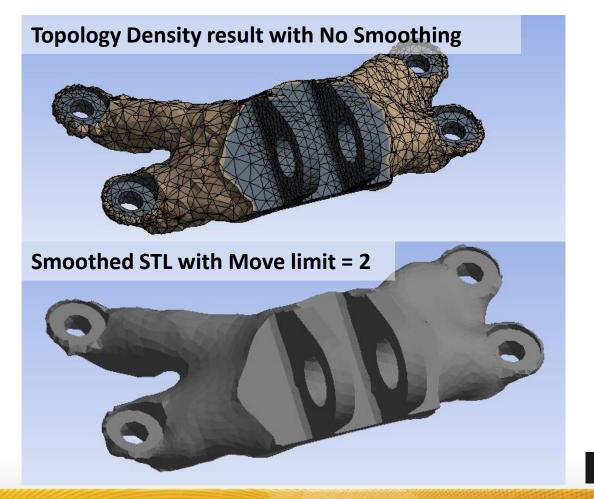
	ANSYS Workbench Solution Status Overall Progress Optimization Iteration 8: Solving Static Str		_	Petails of "Analysis Settings" Reload Volume Analysis Reload Volume Fraction Current Reload Point Definition Maximum Number Of Iterations	Manual Initial Initial Iteration Number 8		Analysis Settings Optimization Region Objective Manufacturing Constr Response Constraint Solution (C6) Solution Inform Topology Z Topology S of "Analysis Settings"	traint t nation • Density Tracker
		v				= Rel Rel	load Volume Analysis load Volume Fraction rrent Reload Point	Manual Iteration Numbe
) (etails of "Analysis Settings" Reload Volume Analysis			Icon to in	dicate the	± De	finition Iver Controls	
	Reload Volume Fraction	Off Manual		Reload Vo		+ No	lver Type onlinear Controls	Program Control
-	Manimum Number Of Beneficere	Off		Fraction of	option		tput Controls alysis Data Management	


Stress constraint and Shell body optimization

Support stress constraints in the region outside of Optimization region. It could be exclusion region or other parts of the entire model.

Optimization of Shell bodies


Shell bodies are also optimized if included in the optimization region, but it is not optimized in the thickness direction

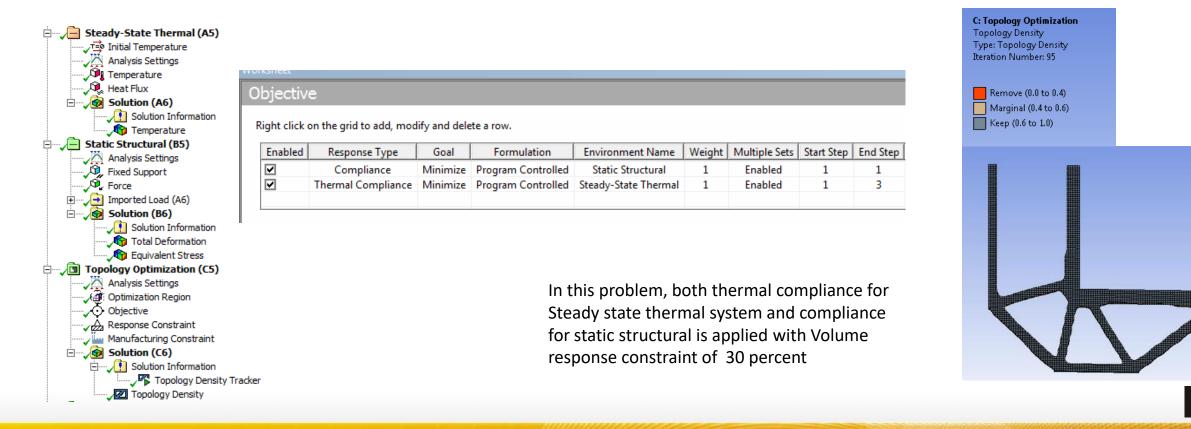


NNSYS

Smoothing Result

Smoothing result can be added under Topology Density result. It creates Smoothed STL, which can then be used for design validation study

Move limit default is 0. The STL is smoothed further with increasing value of Move limit


De	etails of "Smoothing"	
Ξ	Definition	
	Move Limit	2.
	File Name	C:\Users\jchopra\AppData\Local\Temp
	Export Model (Beta)	No
Ξ	Display	
	Color	
	Statistics (Triangles)	8498

our prenninger recours

ANSYS

Thermal Stress Optimization (Beta)

Support thermal compliance objective for Steady State Thermal System and Compliance objective for Static Structural system to optimization thermal stress case. Temperature constraint on Steady State Thermal System and Response constraint like Stress on Static Structural system can be added at the same time to Topology optimization

Mechanical Level-Set based Topology Optimization –BETA ANSYS 2019R1 update

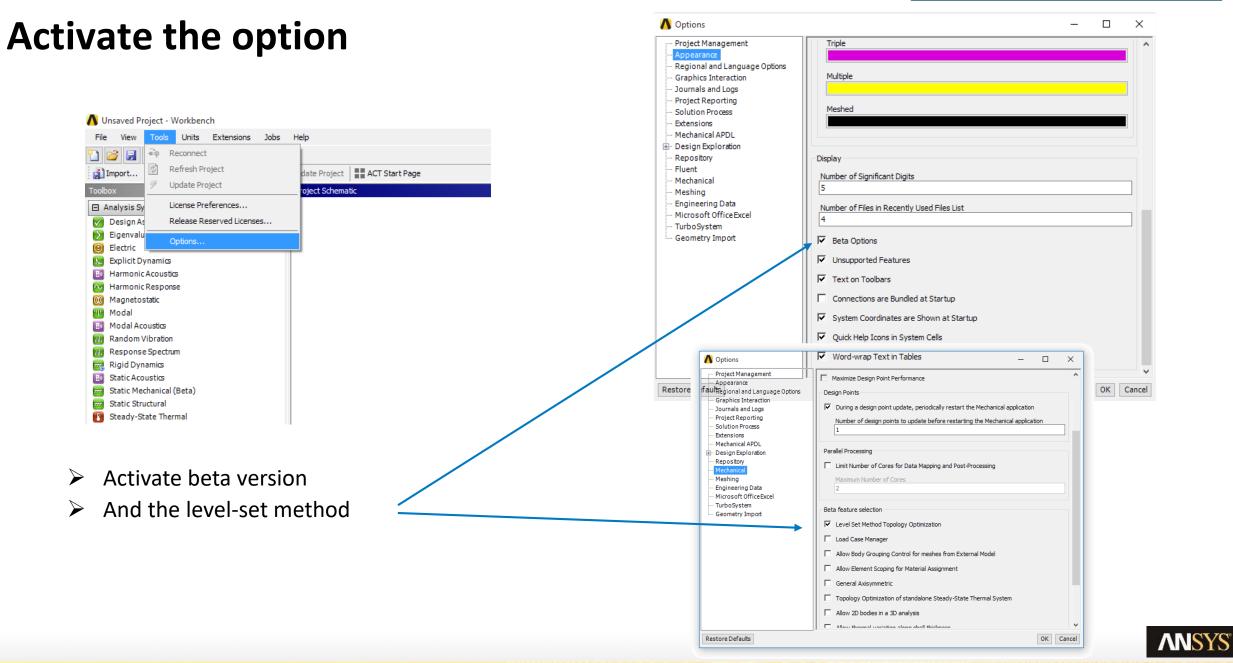
Outline

Mesh

Support Tetra mesh (linear or quadratic) for the optimizable regions. No restriction for non optimizable regions.

Static Linear Analysis

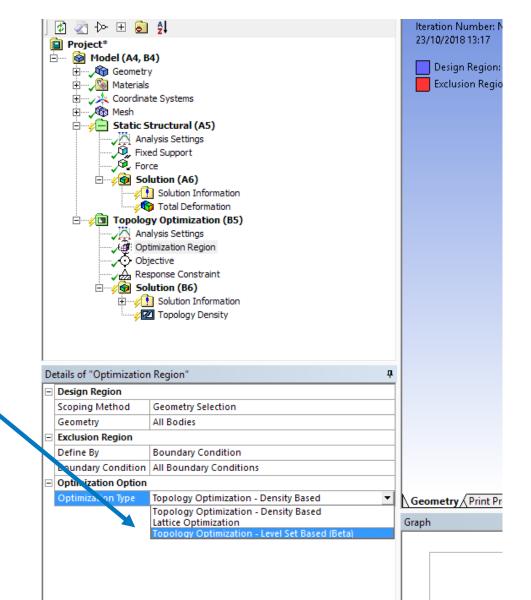
- ✓ Support the following BC: fixed parts, prescribed displacement
- ✓ Support the following Loads: surface load, nodal load, volume load (acceleration, gravity, etc)
- ✓ Available criterion: "generalized" compliance (both valid for standard loads and prescribed displacement)
 Modal Analysis
- \checkmark support the following criterion: eigen frequency


Geometric analysis

✓ Support volume, mass

Optimization

✓ Each criterion can be handled as an objective or a constraint


TOLOPOLGY OPTIMIZATION

TOLOPOLGY OPTIMIZATION

Level-set based Top Opt.

Chose the « level-set solver »

NNSYS

Static Linear Analysis

"Generalized" Compliance is supported as objective or constraint

Filter: Name 💌		Objective											
🙆 🕢 ↔ ⊞ 盲 🛔													
🗄	~	Right click on the grid to add	, modify ar	id delete a row.									
🗄 🖳 🔊 Materials		Enabled Response Type	Goal	Formulation	Environment Name	Weight	Multiple Sets	Start Step	End Step	Step	Start Mode	End Mode	Mode
Coordinate Systems		Compliance V		Program Controlled	Static Structural	1	Enabled	1	1	1	N/A	N/A	N/A
Hesh													
Analysis Settings Fixed Support Force Displacement		Mass											
Fixed Support		Volume											
Force													
Solution (A6)													
Total Deformation													
Static Structural 2 (B5)													
Analysis Settings													
Fixed Support													
Second Second													
Solution (B6)													
Solution Information													
👘 Total Deformation													
Topology Optimization (C5)													
Analysis Settings													
Objective													
Response Constraint													
🖻 🥪 🖉 Solution (C6)													
Topology Density Tracker													
⊡¢ Topology Density													
	~												

Some examples

... without any smoothing !

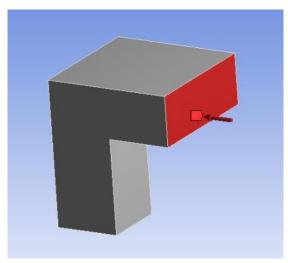
Use case: stopper

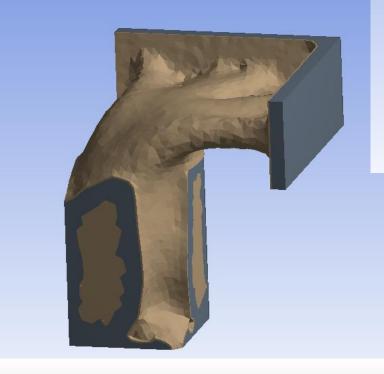
Mesh

- ✓ Tetra linear
- ✓ 117,000

Analysis

✓ Static lin (1): pressure


Optimization


- ✓ Min compliance
- ✓ St: mass<50%</p>

Result

✓ 27 iterations

- ✓ Current shape is feasible:
- ✓ (min) objective 0 : 7202.64
- ✓ constraint 0 : 1.84326e+07 <= 1.84475e+07

TOLOPOLGY OPTIMIZATION

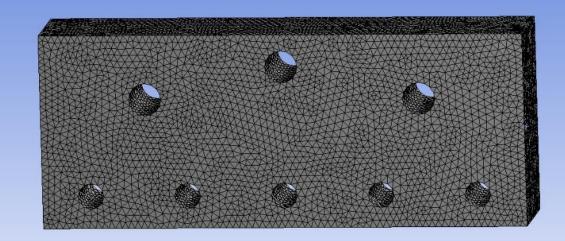
Use case:TOPO_OPT_LONG_WB2_002

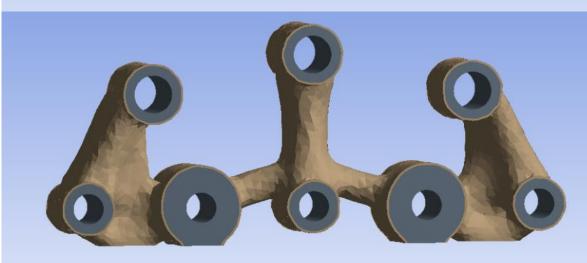
Mesh

- ✓ Tetra linear
- ✓ 373,000

Analysis

- ✓ Static lin (1): force + pressure + remote force
 - + nodal force + nodal pressure + remote disp +


Optimization


 \checkmark

- ✓ Min comliance(1)
- ✓ St: mass<25%

Result

✓ 373kel : 52 iterations, objective1: 5.04038e-06, constraint 1: 3.89791, limit: 3.89848

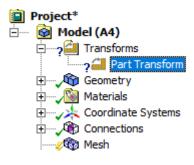
Additive Manufacturing

ANSYS 2019R1 update

Summary

Workbench Additive

- Ability to orient part after geometry attach
- Layered tetrahedron meshing
- Heat treat step added
- Support restarts (add step after complete of build and cooldown)
- Allow powder in build step
- Allow non-build elements in build step
- Allow symmetry to be used
- Added 17-4 PH and AlSi10Mg to the sample materials
- Tmelt can be specified as a tabular entry (beta)
- Blade interference prediction (beta)

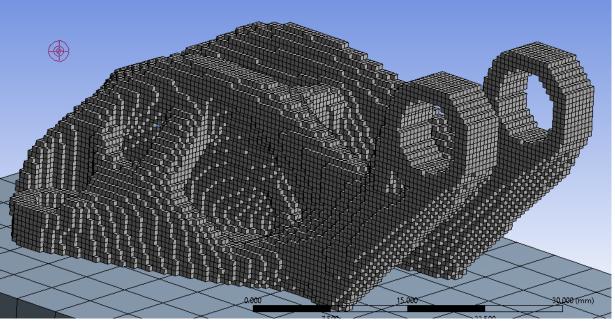

ANSYS Additive (Print & Science)

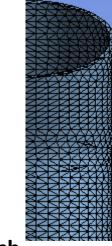
- New Voxelization Method
- User Defined Supports
- Single Bead Parametric (Additive Science)
- Porosity Parametric (Additive Science)
- Beta Thermal History (Additive Science)
- Thermal Solver Updates
- Thermal Mesh Control
- Updated Part Size Limitations
- Added Al357 and Ti64 Thermal
- Added Mesh Visualization Output

Ability To Orient Part After Geometry Attach

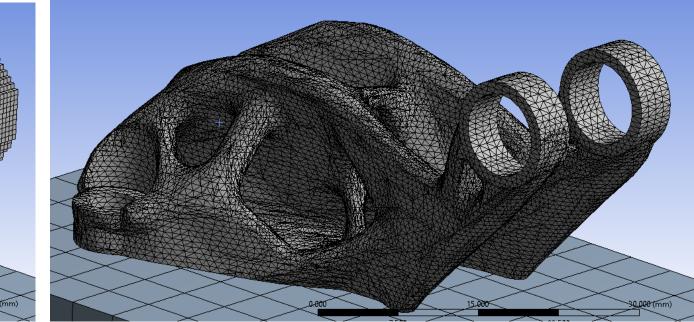
You can orient the part after importing it

It can be parameterized, so you can investigate the effect of orientation on support needs and on build distortion and stresses





Layered Tetrahedron Meshing


You can use a tetrahedral mesh for build simulation

- Captures geometry details
- More suitable for thin-walled parts
- Produces layered mesh
 Cartesian Mesh

Layered Tetrahedron Mesh

ADDITIVE

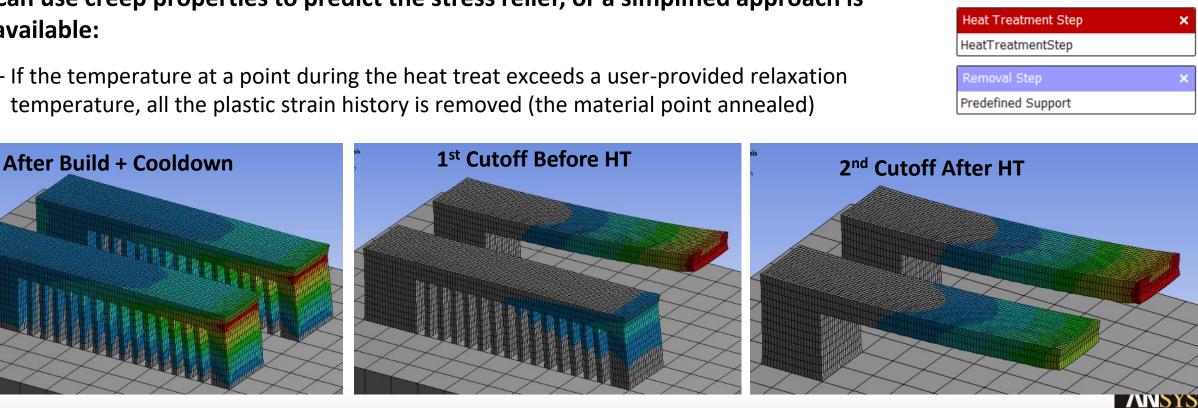
Static Structural

Cooldown Step

Removal Step

Predefined Support 2

Build Step


Cooldown

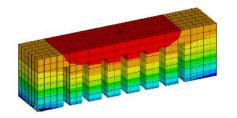
Build

Heat Treat Step Added

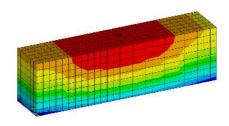
Can add a heat treat process step to stress relieve the part after it has been built

- Stress relief before the part has been cut off or after
- Can use creep properties to predict the stress relief, or a simplified approach is available:
 - If the temperature at a point during the heat treat exceeds a user-provided relaxation temperature, all the plastic strain history is removed (the material point annealed)

Support Restarts


You can now add a step after the completion of the build and cooldown steps

- Allows you to ensure those steps are properly performed before going on
- Also allows you to try different heat treat and/or removal steps

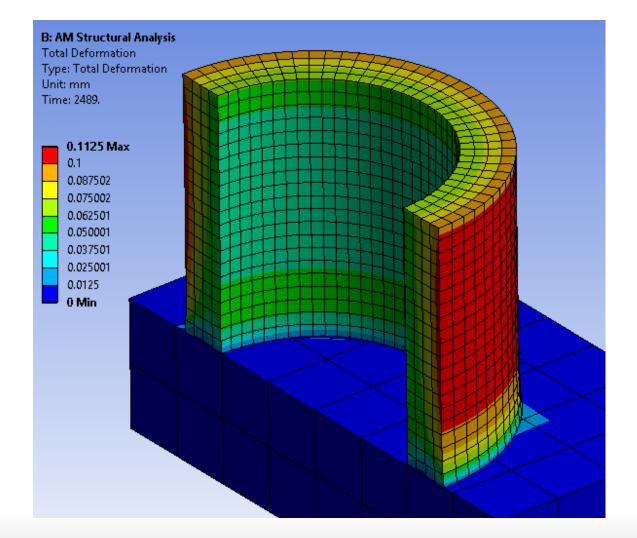

Allow Powder In Build Step

You can now include material that remains as powder during the build

- Useful if you have multiple parts in close proximity on the build plate and the heat transfer between them is important to consider
- Also useful if you have a part with features close together where the heat transfer between them is important

No Powder (Equivalent Convection)

With Powder


Allow Non-build Elements In Build Step

Experimental builds often have clamps, thermocouples, and other measuring devices inside the build chamber

You can now include them in the simulation as they will not be part of the build process (but will carry heat and stress)

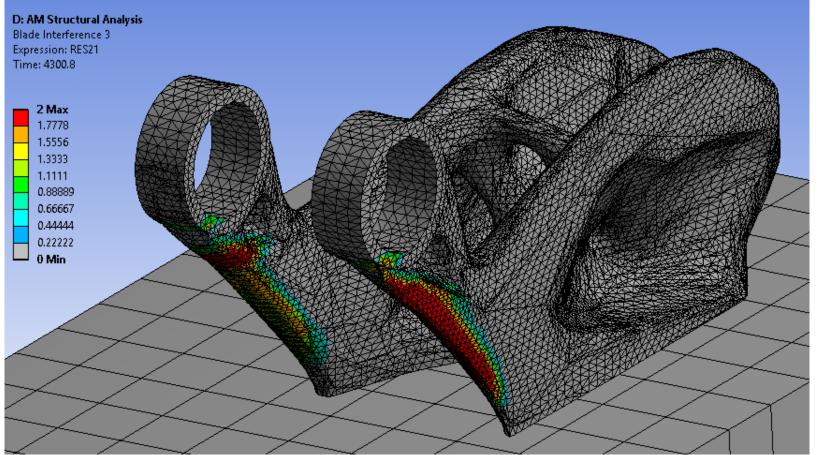
Allow Symmetry To Be Used

If you have a symmetric part, you can use symmetry to reduce the model size

Added 17-4 PH And AlSi10Mg To The Sample Materials

17-4 PH steel and AlSi10Mg have been added to the list of available and validated materials

• Both temperature-dependent thermal and structural properties are provided


Tmelt Can Be Specified as a Tabular Entry (Beta)

The melt temperature can be specified as a tabular parameter

- Tmelt can be a function of (x,y,z) or time
- Allows control of thermal history that some users are doing with the machine build settings

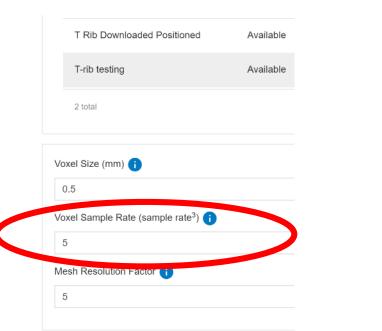
Blade Interference Prediction (Beta)

You can predict areas where there is likely blade interference (blade crash) during the build

New Voxelization (AP)

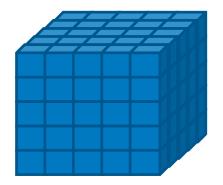
Subdivide voxels in pre-processing to get voxel density approximation

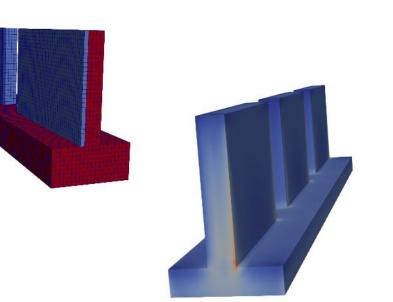
Helps to address meshing problems with extremely fine features on large components


Voxel Sample Rate

Users can view voxel density file

Mechanical properties are scaled based or voxel density


More accurate distortion


Limitation: stress visualizations are known to look odd due to stiffness of partial density voxels

Sample Rate of 5 = 125 Subvoxels

Uploading Supports (AP)

Utilizes new voxelization

- User can design their support structures
- User can upload multiple support designs per part
- Approximate geometry and supplement with voxel density
- More accurate comparisons on customer parts
- Addresses the request of many customers during evaluation period
- Standard or Volumeless support .stl files
- Limitations: Cannot output optimized supports

Supports				Upload Support
Name	Туре	Availability	Created	Min. Support Height (mm)
T Rib Thin wall	Volume-less STL	Available	Oct 11, 2018	5
T Rib Thick Wall	Standard STL	Available	Oct 11, 2018	5
T-Rib Thin in as Thick	Standard STL	Available	Oct 12, 2018	5
T-Rib Thick wall as thin wall	Volume-less STL	Available	Oct 12, 2018	5

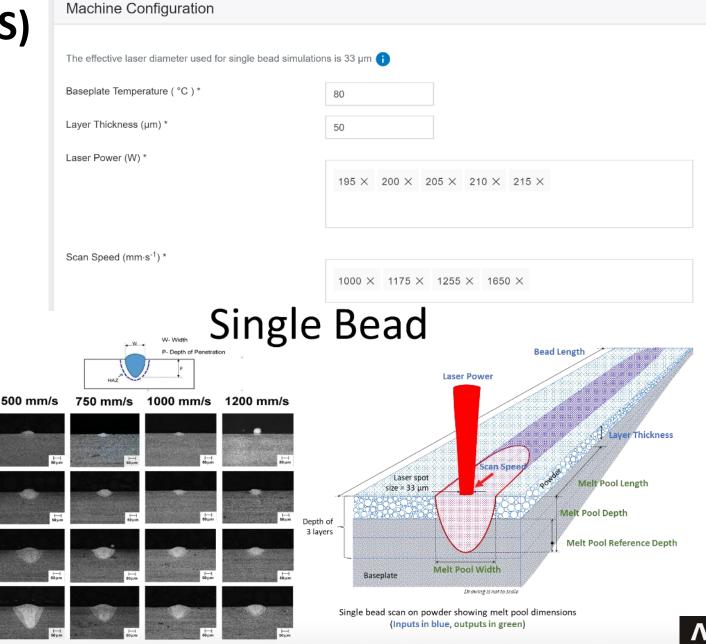
Upload Suppor	t	
Select Support		
ascii or Max file	se File No file chosen binary .stl file required. The dimensions MUST be in mm e size is 500 MB. ions for reducing STL file size	n units and aligned with the part STL file in the X-Y plane.
Provide Support descripti	on Support STL Type	
Name		Volume-less STL
Minimum Support Height	Save Cancel	Standard STL
(mm) Support STL Type	Save Cancel	
Save Cancel	✓ Simulate With Supports	
	Support Type	
	Automatic	
	Automatic	
	Support STL	

п.

ılı

Single Bead Parametric (AS)

New Additive Science Feature


Dimensions of meltpool (Length, Width, Depth)

Helps users set machine parameters of power and speed

Parametric Capability: up to 300 permutations

Tuned and validated for multiple materials (IN718, IN625, CoCr, 17-4 PH, Ti64, Al357)

Limitations: Tuning function only supports a specific range of parameters, so range is limited in UI.

≥

50

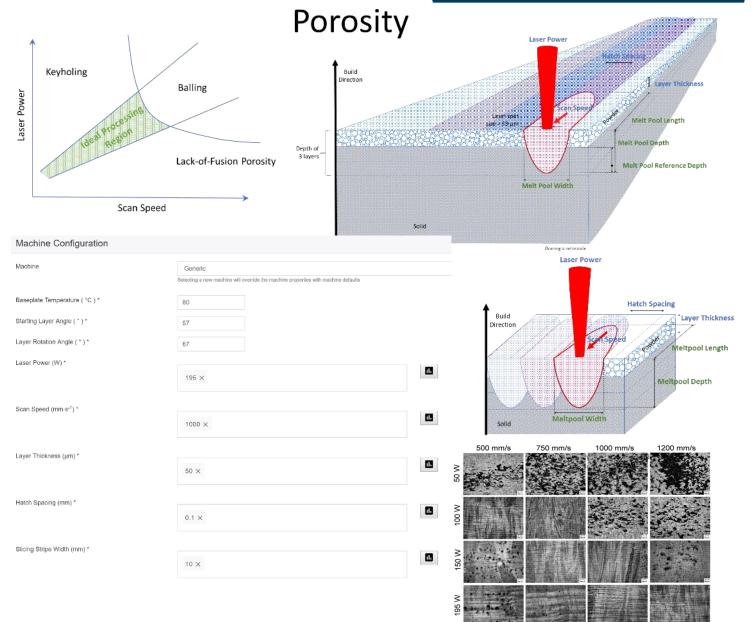
100 W

≥

150

195 W

Porosity Parametric (AS)


New Additive Science Feature

Helps users set process parameters of scanning strategy in addition to power and speed

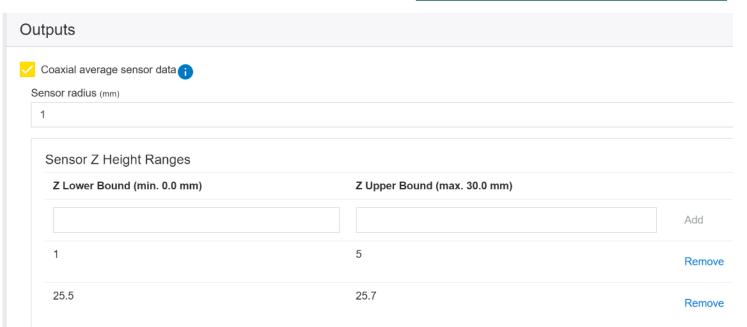
Parametric Capability: up to 300 permutations

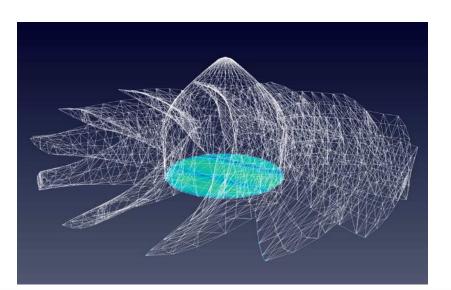
Tuned and validated for multiple materials

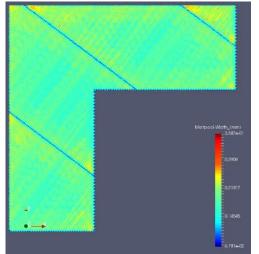
Limitations: Tuning function only supports a range of parameters, so range is limited in UI.

BETA Thermal History (AS)

New Additive Science Beta Feature


Helps users to visualize temperature profile of a part


Allows users to evaluate meltpool dimensions based on scan vectors of a specific part


Users choose their designed geometry

User selects layers of interest

Coaxial average sensor allows users to choose radius of sensor over which to average data points

Existing Feature Updates (AP & AS)

- Thermal Solver: the thermal solver has undergone multiple updates to more accurately approximate the physics, which provides more realistically accurate thermal strain results
- MRF parameter introduced: This is a Mesh Resolution Factor, which controls . how much the full fidelity thermal mesh will be expanded for thermal strain and thermal history simulations. This parameters allows users to control the speed, fidelity, and data generation for simulations
- Part Size limitations: removed for desktop increased to 500 MB for Cloud .
- Download .stl component from an uploaded build file .
- Expanded thermal simulation material database to include Ti64 .
- Added Al357 for thermal and mechanical simulations .
- Support Parameters have been updated to be more clear and provide users . with clarity in controlling optimized support structures that are output
- Added voxelized mesh file output, so that users can view the mesh as soon . as the simulation starts instead of needing to wait for the entire simulation to complete before mesh can be visualized

Mesh Resolution Factor controls the fidelity of the solution by scaling the mesh for the thermal Mesh Resolution Factor strain portion of the calculations. The factor is inversely proportional to run time and fidelity.

5

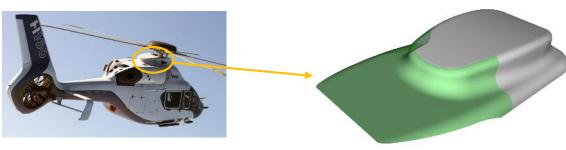
Choose File No file chosen ascii or binary .stl file required. The dim Cloud 500MB Max file size is 500 MB. Instructions for reducing STL file size Choose File No file chosen ascii or binary .stl file required. The dimer Desktop Unlimited Instructions for reducing STL file size

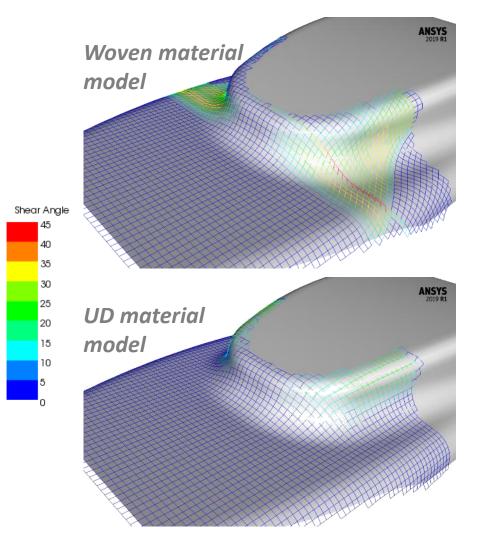
Search				
Neme	Key	Source	Date Modified	Available for Thermal Simulatio
17-1PH	17-1ph	ANSYS Pre-defined	4/9/18, 10:04 AM	~
AI357	AI357	ANSYS Pre-defined	11/12/18, 4:41 AM	~
AlSi10Mg	AlSi10Mg	ANSYS Pre-defined	4/9/18. 10:04 AM	×
CoCr	CoCr	ANSYS Pre-defined	4/9/18, 10:04 AM	~
IN625	Inc625	ANSYS Pre-defined	4/9/18, 10:04 AM	~
IN718	Inc718	ANSYS Pre-defined	4/9/18, 10:04 AM	~
Ti64	Ti6 4	ANSYS Pre-defined	4/9/18, 10:04 AM	~

Composites 2019 R1 Release Notes

ANSYS Composite PrePost (ACP) ANSYS Composite Cure Simulation (ACCS)

Outline


- Composite PrePost (ACP)
 - UD Draping
 - Cut-off Feature for The Lay-up Mapping
 - Geometrical Selection Rule
 - Material Plot
 - New Serialization Format
 - Miscellaneous
- Composite Cure Simulation (ACCS)

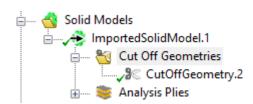

COMPOSITES

Draping

- The draping functionality has been extended to unidirectional (UD) fabrics. The draping algorithm now differentiates between a woven and a UD material model.
- The transverse deformation of the draping mesh (modeling spreading and compacting of fibers) can be controlled with the UD coefficient.

Draping a patch in the back of a helicopter rooftop.

Effect of the draping material model on the shear angle calculated by ACP draping simulation.

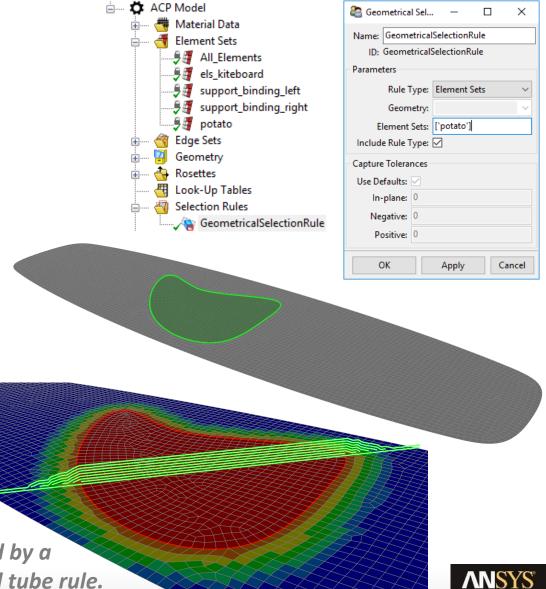

COMPOSITES

A

B

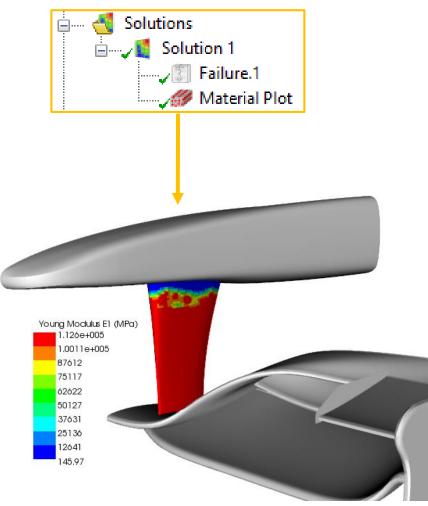
Cut-off Geometry Feature for the Lay-up Mapping

- The lay-up mapping feature for solid meshes now supports the cut-off geometry feature in the same way as the standard extruded solid model does.
- This feature allows you to shape the imported solid model after the lay-up mapping. That gives you further control of geometry and mesh and it simplifies the preprocessing.


- A) Simple solid with structured mesh
- B) Cut-off geometry that is applied after the mapping
- C) Shaped solid with mapped lay-up

COMPOSITES

CAD Selection Rule becomes Geometrical Selection Rule

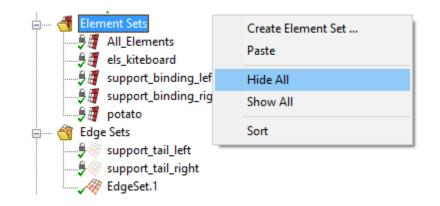

- The Geometrical Selection Rule allows for a parametrized lay-up definition in relation to Element Sets. As a result, you can now easily define a ply staggering from an Element Set inward or outward.
- The functionality of the former CAD selection rule remains the same.
- The Geometrical Selection Rule can thus be based on CAD geometries as well as Element Sets by switching the rule type.

Outward ply staggering defined by a geometrical rule and templated tube rule.

Material Plot

- The new Material Plot allows to plot variable material properties such as orthotropic elasticity, density, strain and stress limits at a ply-wise level.
- It is available as lay-up and solution plot. The latter one also allows to consider temperature dependency.
- Reviewing the effect of field variables (shear angle, temperature and user-defined variables) on the mechanical properties of the material has been greatly enhanced.

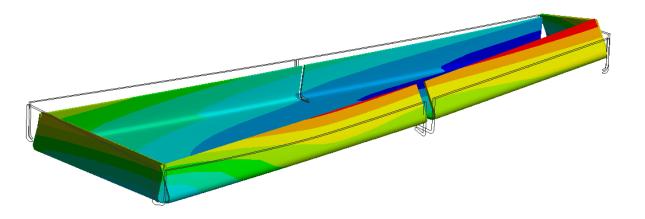
Plot of the Young's Modulus in the fiber direction as a function of Temperature, Shear Angle and Curing status.


New Serialization Format ACPH5

- The serialization has moved from a text to the binary ACPH5 serialization format.
- The composite workflows in WB are not affected by this change and previous models can be upgraded to the new format with ease.
- The new format is more efficient and flexible.

Miscellaneous

- GUI Improvements
 - Hide and Show All actions have been added to some groups such as Element Sets, Edge Sets etc. to control the visualization for all items in a group
 - For direction definitions a flip button is now available enhancing the usability.
- The performance bottle neck when loading models with thousands of plies has been resolved.
- Various bug fixes.

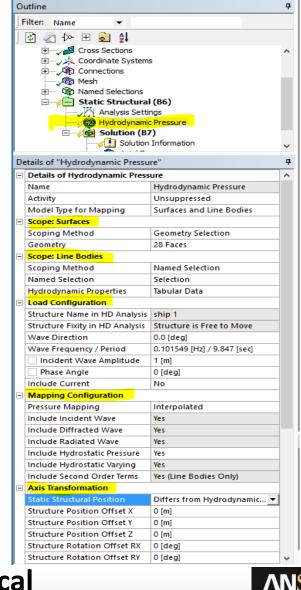


ANSYS Composite Cure Simulation (ACCS)

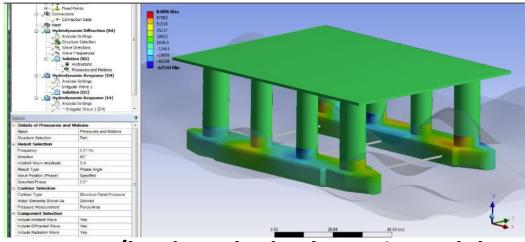
Improvements in the Cure Simulation workflows and ACCS module:

- ACCS supports now variable material properties during the cool down (solidified material state).
- Bugs in the unit handling have been resolved.
- The stability, especially for bigger models, has been improved.

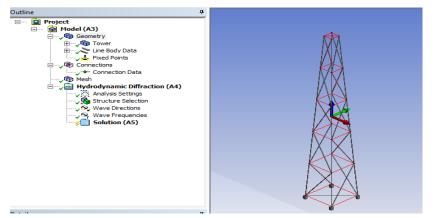
Mechanical Aqwa

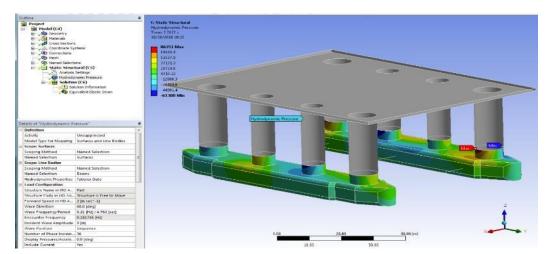

ANSYS 2019 R1 update

SA799: Hydrodynamic load mapping ACT extension


- Replaces previous multi-step workflow
- Simplifies the load transfer process significantly
- Represent results in WB
- Valid for combination of solid/surface and line elements

Foolbox	▼ ₽ X	Project Schematic	⊸ џ х
Analysis Systems	-		
🗹 Design Assessment			
[Eigenvalue Buckling		▼ A ▼ B ▼ C ▼ D	
Electric		1 🥪 Geometry 1 🖗 Mesh 1 🔯 Hydrodynamic Diffraction 1 🚾 Static Structural	
💹 Explicit Dynamics		2 🔞 Geometry 🗸 🚽 📲 2 🚳 Geometry 🗸 🛹 2 🍘 Model 🗸 2 🦪 Engineering Data	× .
😨 🛛 Fluid Flow - Blow Molding (Polyflo	ow)	Hydrodynamic Geometry 3 💓 Mesh 🗸 3 🍓 Setup 🗸 🖪 🔞 Geometry	<u> </u>
Fluid Flow-Extrusion(Polyflow)			
G Fluid Flow (CFX)			
🖸 Fluid Flow (Fluent)	Ξ	5 😥 Results 🗸 🔰 5 🍓 Setup	✓ <u>▲</u>
😋 Fluid Flow (Polyflow)		Hydrodynamic Diffraction 6 📢 Solution	🗸 🔺
Harmonic Acoustics		7 😽 Results	× .
🛯 Harmonic Response		Static Structural	
Hydrodynamic Diffraction			
🛐 Hydrodynamic Response			
🞽 IC Engine (Fluent)			
🞽 IC Engine (Forte)			
🔘 Magnetostatic		E	
😶 Modal		1 🥪 Geometry	
📴 Modal Acoustics		2 🔞 Geometry 🗸	
📶 Random Vibration			• • •
📶 Response Spectrum		Structural Geometry Hydrodynamic diffraction -> Stat	ic Med

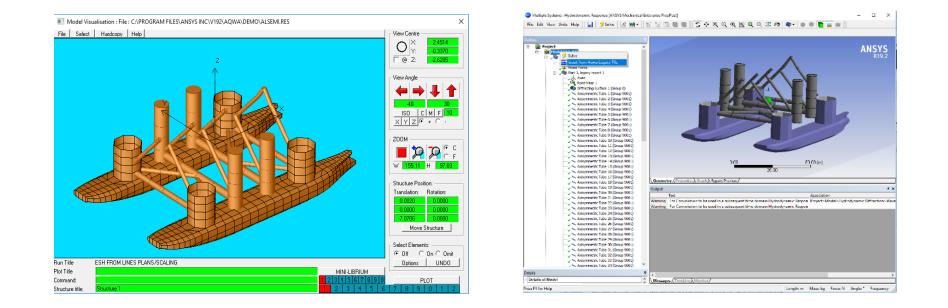



SA799: Hydrodynamic load mapping ACT extension

Pressure/loads on hydrodynamic model

HD model of fixed jacket platform (Morison equation for load on tube)

Mapped pressure/loads on FE model

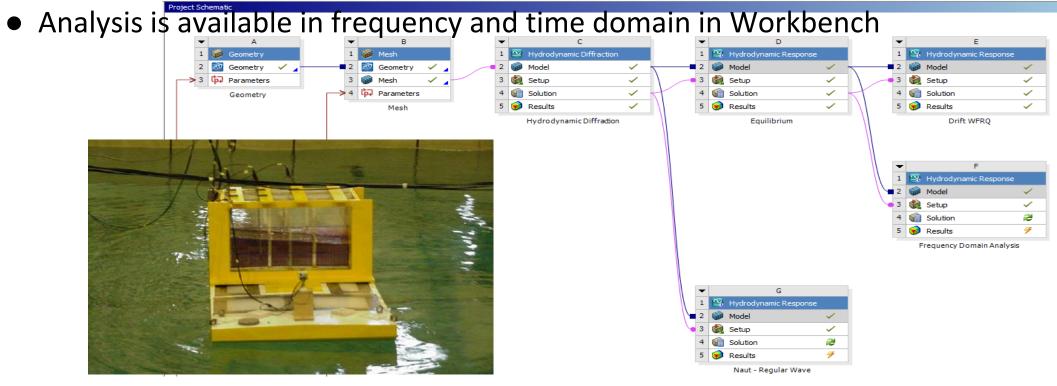


Axial force on FE model

SA800: Aqwa model data file import

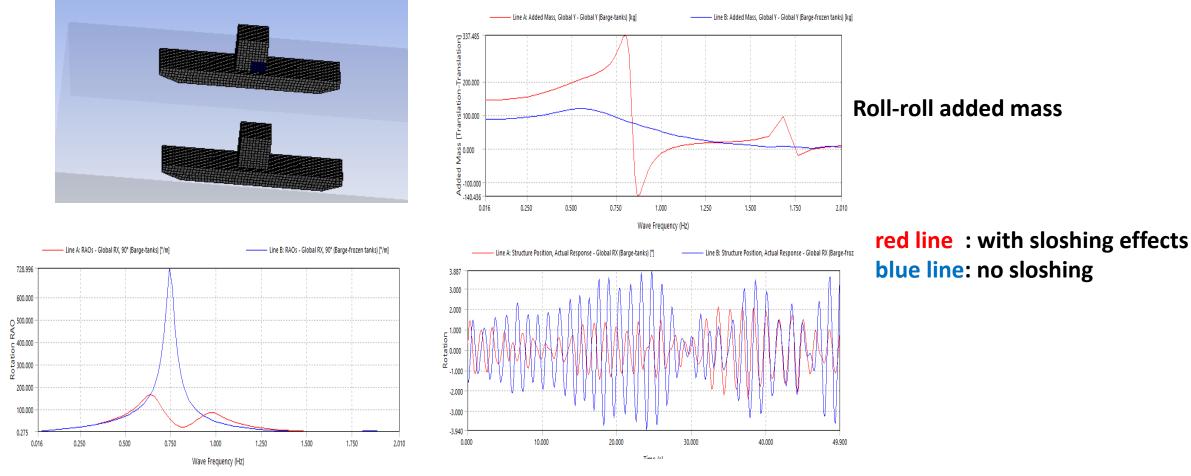
- To encourage existing users with old models to move to WB
- To transfer data from one project to another.

SA800: Aqwa model data file import


• Flexible import to WB

Project/Model Level	Individual Aqwa Specific item
Whole existing Aqwa model data (geometry, connection, constraint, environment)	Each item listed in left column
Project Solve Solve Insert from Aqwa Model Data File Part 1- Aqwa model data import 1 Part 2- Aqwa model data import 1 Connections Connection Data Connection Data Cable 1- Aqwa model data import 1 Cable 2- Aqwa model data import 1	Project Model (A3) Geometry Fixed Points Connections Insert Connection Insert from Aqwa Model Data File Hydrouyname conraction (PC+) Analysis Settings Structure Selection Wave Directions Wave Frequencies Solution (A5)

SA801: Internal tank hydrodynamic coupling


- Coupling effects between liquid motion (sloshing) in the partially filled internal tanks and the attached marine structures
- Hydrostatic and hydrodynamic coupling included

Molin test model

SA801: Internal tank hydrodynamic coupling (example)

• Two models: (1) with liquid sloshing effects; (2) liquid is frozen (no sloshing)

Time history of ship roll motion

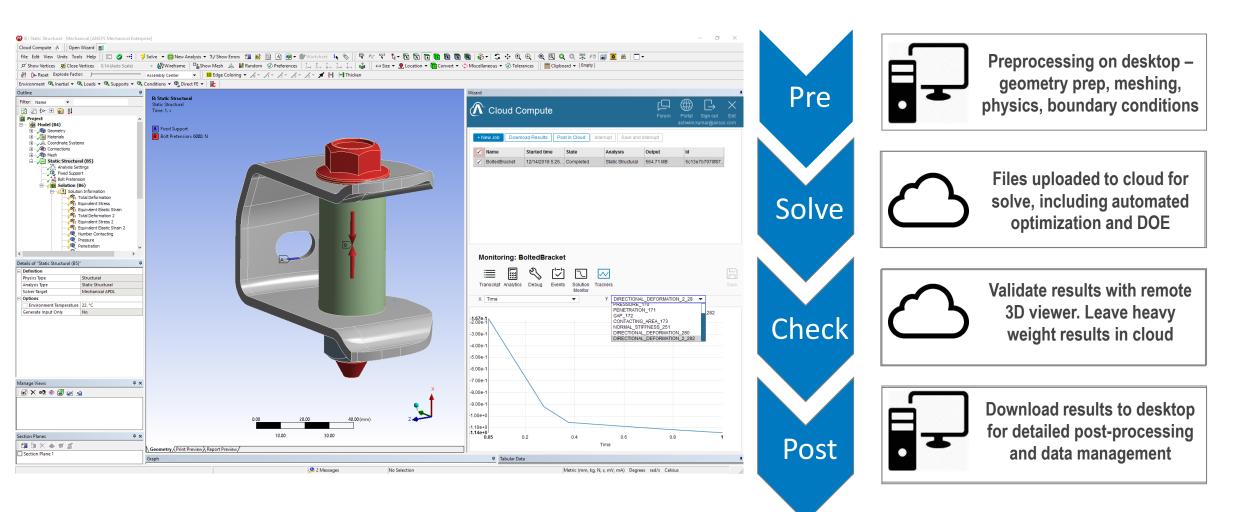
Roll motion in frequency domain

February 5, 2019

ANSYS Cloud

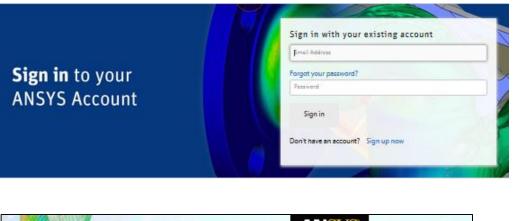
ANSYS CLOUD

ANSYS Cloud



Cloud-based service that provides easy access to on-demand HPC directly from

ANSYS Cloud Compute enables "Solve on Cloud"



Accessing ANSYS Cloud

Register for ANSYS Account

Download ANSYS Cloud Compute ACT App from ANSYS Cloud Portal

Using ANSYS Cloud with ANSYS Mechanical

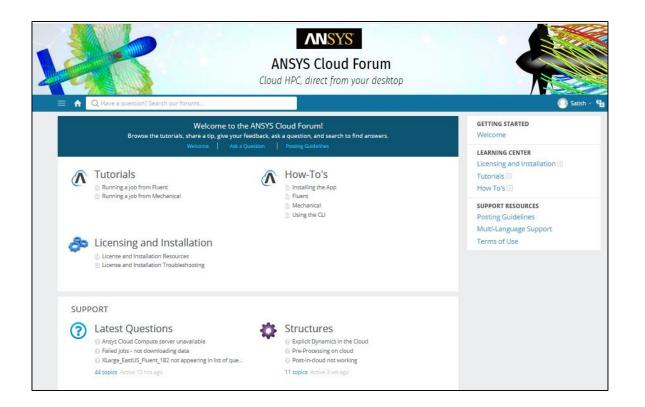
Install the ANSYS Cloud App

Launch and log-in into the App

Monitor the job from the app and the portal

Post processing in the cloud

Downloading results to your desktop



ANSYS Cloud Forum

Forum to get help and provide feedback

Users can:

- search the forum for relevant articles
- ask a question
- post ideas for feature enhancements

